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Abstract 

The importance of data sharing in organizational science is well-acknowledged, yet the 

field faces hurdles that prevent this, including concerns around privacy, proprietary information, 

and data integrity. We propose that synthetic data generated using machine learning (ML) could 

offer one promising solution to surmount at least some of these hurdles. Although this 

technology has been widely researched in the field of computer science, most organizational 

scientists are not familiar with it. To address the lack of available information for organizational 

scientists, we propose a systematic framework for the generation and evaluation of synthetic 

data. This framework is designed to guide researchers and practitioners through the intricacies of 

applying ML technologies to create robust, privacy-preserving synthetic data. Additionally, we 

present two empirical demonstrations using the ML method of Generative Adversarial Networks 

(GANs) to illustrate the practical application and potential of synthetic data in organizational 

science. Through this exploration, we aim to furnish the community with a foundational 

understanding of synthetic data generation and encourage further investigation and adoption of 

these methodologies. By doing so, we hope to foster scientific advancement by enhancing data-

sharing initiatives within the field. 

 

Keywords: synthetic data, machine learning, open science, data sharing
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Leveraging Synthetic Data to Advance Organizational Science 

Today’s era of open science critically involves the sharing of data to strengthen scientific 

understanding, evidence-based practice, and policy making (Banks et al., 2019; Nosek et al., 

2015). Yet, organizational researchers and other social scientists are often hesitant to share their 

data (e.g., Hardwicke et al., 2021; Towse et al., 2020; Vanpaemel et al., 2015; Wicherts et al., 

2006). Vanpaemel et al. (2015) offered a telling example, by reporting that out of 394 data 

requests made across four American Psychological Association (APA) journals, a mere 150 

researchers (38%) ultimately shared their data. The open science movement hopes to reverse this 

trend, where journals and the federal government are beginning to encourage, strongly 

recommend, or even require the sharing of data and materials, as found in the Transparency and 

Openness Promotion (TOP) guidelines of the Open Science Framework (Nosek et al., 2015). In 

the scholarly context, data-sharing activities seek to boost transparency, by allowing for analytic 

reanalysis and reproducibility, bolstering the credibility of scientific research (Pew Research 

Center, 2019; Towse et al., 2020). Moreover, the availability of open data allows for additional 

extended analyses, in addition to much greater flexibility and power when conducting meta-

analyses across studies that provide the raw data.  

Compounding this problem are many challenges to sharing data in organizations. 

Ensuring anonymity is one of them, given that organizations entrusted with employee and job 

applicant data seek to keep the identity of individuals not only anonymous but completely 

private. Other reasons are that organizations stand to gain a competitive advantage from the data 

they glean insights from and do not share; additionally, they avoid the risk of reputational 

damage by not sharing data that might reveal unfavorable information about the organization. 

Keeping these types of ethical, privacy, and proprietary issues well in mind, we believe that 
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synthetic data could offer one promising solution to surmounting at least some of these hurdles, 

for those organizations seeking to be thought leaders by participating in scientific activities in the 

aforementioned spirit of data sharing and open science.  

Jordon et al. (2022) defined synthetic data as ‘data that have been generated using a 

purpose-built mathematical model or algorithm, with the aim of solving a (set of) data science 

task(s).’ If one were to rely on this definition, Monte Carlo simulation data could also be 

considered synthetic data. For example, researchers can simulate data for subsequent t-tests, 

ANOVAs, regression, SEM, and other forms of modeling and hypothesis testing (e.g., generating 

simulation data using the mvnorm function within the MASS package in R; Venables & Ripley, 

2002). But simulations are based on specifying underlying parameters and distributions 

beforehand (e.g., a multivariate normal variance-covariance matrix and its associated mean 

structure). Thus, simulations generate data based on known parameters and attendant 

distributional assumptions; these data are then analyzed to see whether those parameters and 

assumptions can be well approximated by sample-based estimates. 

In this paper, our definition of synthetic data slightly differs from that of Jordon et al. 

(2022). We emphasize the distinction between synthetic data and simulation data: while 

simulation data is generated based on multivariate distributional assumptions, synthetic data are 

generated by learning from the multivariate distribution of the original dataset itself. The goal is 

for analyses performed on synthetic data to closely mirror those performed on the original data. 

A synthetic dataset therefore serves as an alternative to the original dataset, allowing one to 

mirror the original data in its realism and complexity while still ensuring data privacy and 

protection for the original data owners (Raghunathan, 2021). With these advantages, synthetic 

data can promote open data sharing in organizational research, encouraging academic-
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practitioner research partnerships that align with the recent and strengthening development of 

open science initiatives in the field (Castille et al., 2022). 

At the same time, despite the strengths of synthetic data, it is essential to highlight that 

their security and substitutability are critically influenced by many important design factors. For 

example, for synthetic data to serve as a reasonable substitute for the original data, researchers 

need to determine their intended use, evaluate the efficacy and effectiveness of synthetic data 

generation techniques closely, and ensure stringent data anonymity and otherwise uphold ethical, 

privacy, and proprietary standards.  

The primary goal of our paper is to develop a systematic framework that guides 

organizational researchers through the synthetic generation and evaluation processes, as we are 

unaware of any such resources available to organizational scientists. This framework helps 

readers consider, generate, interpret, and use synthetic data from a broad perspective. Through 

two specific examples, we will demonstrate how to apply machine learning (ML) generative 

models to learn from a given dataset. Although the machine learning method we explain and use 

is called generative adversarial networks (GANs), readers should know there are many other ML 

options for generating synthetic data; however, covering those here would detract from the 

central goal of our paper. Based on this framework, we also provide two empirical 

demonstrations. Ultimately, our goal is not to serve as a definitive resource, but rather to provide 

organizational scientists and practitioners with a general understanding and rationale behind 

generating synthetic data, hoping they will be motivated to pursue synthetic data methodologies 

further and expand upon our efforts. 

We also discuss ideas for navigating potential ethical dilemmas and risks associated with 

developing and applying synthetic data (Porter, 2008; United Kingdom Statistics Authority, 
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2022). Taken as a whole, our research invites the broader integration of synthetic data within the 

organizational sciences, helping to unlock organizational data that has remained restricted, 

inaccessible, and thus ultimately lost over time. Ultimately, as more high-quality synthetic data 

are shared that strikes an appropriate balance between accessibility and privacy, we envision 

both organizational science and evidence-based practice to benefit greatly. 

Synthetic Data: Answering Key Questions 

The term ‘synthetic data’ is a relatively unfamiliar concept for most organizational 

scientists. When encountering a new research method, four main questions usually need answers: 

What is this method? Why should we use this method? How does this method differ from 

previous methods? How should we implement this method? Below, we will address these four 

questions in turn as they pertain to synthetic data. 

What Are Synthetic Data? 

In this paper, we define synthetic data as artificially generated data designed to emulate 

the original data as closely as possible without revealing actual observations in that data. The 

purpose is to provide an alternative to original data in situations where using original data is 

impractical, poses privacy concerns, is disallowed (e.g., organizationally, legally, ethically), or is 

otherwise restricted (Fonseca & Bacao, 2023; Jordon et al., 2022). 

Consider an original dataset containing 1,000 data points. The corresponding synthetic 

dataset will also consist of 1,000 data points, but it will include carefully constructed noise to 

ensure that the two datasets do not exactly overlap, thus protecting the privacy of the data. At the 

same time, both datasets will have similar multivariate distributional properties, ensuring that the 

synthetic dataset can substitute for the original dataset with very similar analytic results, no 

matter what analysis is used. 
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Why Would One Synthesize Data? 

Privacy issues have always been an obstacle to data sharing with researchers (Gabriel & 

Wessel, 2013; Leavitt, 2013). Rubin (1993) highlighted the privacy risks of sharing microdata 

(i.e., information about individual transactions) and the complex legal issues it presents. He 

suggested using imputed synthetic data as a solution, where confidential information in a dataset 

is replaced with estimates generated from an imputation model, using the same background 

variables without disclosing the original sensitive data. Whereas imputations require assuming 

and estimating a model that underlies the data, ML-based methods can learn the model from the 

data themselves, thus improving upon Rubin’s ideas. We will illustrate the use of one type of ML 

generative model, Generative Adversarial Networks, or GANs (Goodfellow et al., 2014; 

Goodfellow et al., 2020). The GAN procedure begins as noisy data but then shapes itself into a 

synthetic dataset as it learns its distributional form from an actual dataset. Therefore, a synthetic 

dataset based on a GAN does not contain any actual individual data. 

Note that although here we only introduce synthetic data as a potential approach to 

address the fundamental concern of data sharing—privacy issues, we also believe that the use of 

synthetic data is a promising solution to other obstacles preventing organizations from sharing 

their data. These obstacles are more nuanced, such as proprietary concerns (e.g., why should 

companies give up their competitive advantage?), legal issues (e.g., why should I share if it 

exposes an organization to legal liability?), and ethical considerations (e.g., do synthetic data 

break the contract made with employees about the use of their data?). These issues are important 

for organizational research but are often not considered in other disciplines (e.g., computer 

science) that study synthetic data extensively. We hope this paper can serve as a starting point 

for the use of synthetic data in organizational research, provide a general understanding and 
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rationale behind generating synthetic data, and call for more thought and research on synthetic 

data within the field. 

How Do Synthetic Data Compare to Data Generated by Existing Methods? 

In order to highlight the features of synthetic data, we compare it with similar but distinct 

data from two existing methods: anonymizing data and simulating data. 

Anonymizing or De-identifying Data 

Anonymization is the process of removing or altering personal identifiers from original 

data so that the individuals described by the original data become anonymous. Often, it involves 

changing or removing those variables that could directly or indirectly lead to identifying 

individuals in the dataset. Anonymized data have some use, but their value can be compromised 

due to having to remove, combine, or alter key features of the original dataset. For example, 

removing demographic information directly results in the inability to study these variables; yet 

data binning the data as a solution to keeping individual demographics anonymous would limit 

the variability of the data (Cohen, 1983) and limit the appropriate analyses and inferences that 

can be made as well. By contrast, synthetic data offer several advantages over simply 

anonymizing the original data. When produced well, synthetic data do not contain the original 

data of any individuals, thus offering a higher level of privacy than simply removing personal 

information from the original dataset. Likewise, synthetic data do not require removing or 

combining variables, thus retaining the essential qualities of the original data. In contrast with the 

previous example, demographic information can often still be retained as part of a synthetic 

dataset. 
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Simulating Data 

Often researchers are unsure of the distinction between synthetic data and simulated data. 

Monte Carlo simulations, for example, are generated based on parameter estimates (e.g., a range 

of correlations or specific values, say estimates from a meta-analysis). These estimates are then 

incorporated into prespecified models (e.g., regression, ANOVA) to generate data with modeled 

distributional assumptions (e.g., multivariate normality with prespecified variances and 

covariances, specific proportions in each group, psychometric reliability and validity estimates, 

subgroup mean differences). Although this simulation-based approach affords the user 

tremendous flexibility and control over the data-generating mechanism, the simulated data (and 

its underlying model and parameters) may or may not be generalizable to the real world. By 

contrast, synthetic data are generated using an actual dataset to develop the best approximation 

of that dataset using ML models (in our case, GANs). Because synthetic data are derived from 

the original data, there are no distributional assumptions, and results are intended to reflect and 

thus generalize to the original dataset. 

To further this comparison, let us use hamburgers as an accessible (and tasty) example. 

When using the synthetic data method, imagine we have a meat patty hamburger (representing 

the original data), which vegetarians cannot enjoy (analogous to data that cannot be shared due to 

privacy concerns). To address this, we use a plant-based hamburger (representing synthetic data) 

in place of the traditional meat-based one. Plant-based hamburgers these days can closely mimic 

the texture and taste of meat-based hamburgers, thus allowing everyone to enjoy them 

(paralleling the use of synthetic data to solve data-sharing issues).  

Simulation-based methods, however, are more akin to creating a hamburger from a 

recipe. Thus, if we want to exactly reproduce an existing burger (perhaps so as to share it with 
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others), we need to know our diners’ flavor preferences (sweet, salty, sour, spicy), the burger’s 

texture (soft, hard), the types of ingredients used, the temperature at which the meat was cooked, 

all while considering existing market research data (known parameter distributions). Or if this 

were a Monte Carlo simulation, we might randomly select combinations of flavors, textures, and 

ingredients. For instance, we might randomly generate 10,000 “virtual” burgers, each with a 

randomly chosen set of characteristics (generating random samples). For each virtually generated 

burger, we calculate its popularity based on the assumed preference distribution. For example, if 

a virtual burger has tastes and textures that a high proportion of the population prefers, it is 

considered more popular. Conversely, with the synthetic burger (data), one might aim to 

reproduce the original, albeit imperfect, original burger. 

How Can a Researcher Synthesize Data? 

To facilitate the generation, use, and adoption of synthetic datasets within organizational 

research, we outline a general process to guide organizational researchers (see Figure 1). In 

general, this process consists of two major steps, data generation and evaluation, which we have 

color-coded accordingly. Next, we review each of these steps along with the specific 

considerations within each. 
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Figure 1 

Flow Chart Summarizing the General Process Steps for Synthesizing Data 

 
Note. GANs = generative adversarial networks; VAEs = variational autoencoders.  
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Examine Original Data and Determine Intended Use of Synthetic Data 

The first step of data generation is to examine the original data and determine its intended 

use for synthesis. The features of the original data, and the intended use of the synthetic data, are 

both key factors in understanding and guiding the subsequent steps of the process. 

As previously mentioned, synthetic data are generated by learning from the multivariate 

distribution of the original dataset itself. However, different ML models have their own strengths 

and adaptability in learning and capturing various features. For example, the Gaussian Copula 

models work particularly well for data that are approximately normal or can be made 

approximately normal through transformations. On the other hand, GANs work better for 

capturing complex, high-dimensional distributions, making them suitable for more complex data. 

For different types of original data, the characteristics of different models determine how 

well they perform in learning them and generating corresponding synthetic data. Likewise, the 

complexity of relationships may limit the effectiveness of synthetic data methods. Greater 

complexity in the relationships between variables makes generating accurate synthetic data more 

challenging, leading to increased computational complexity and a higher risk of overfitting. 

Besides that, the intended use of the synthetic data also influences our choice of generative 

model selection and evaluation. Different intended uses mean that the synthetic data need to 

focus on learning different attributes of the original data, and different generation methods may 

be better suited for producing specific attributes.  

We foresee at least three possible uses of synthetic data. First, researchers who cannot 

share their original data may generate and share synthetic data so that others can approximate 

and perhaps extend their original analyses (e.g., hypothesis tests, factor analyses, structural 

equation models). Note that the original data may not have satisfied the assumptions of the 
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statistical models used (e.g., homoscedasticity for regression analysis), and results may not have 

been statistically significant. Nonetheless, the goal for synthetic data is to be as close to the 

original data as possible, so that the properties of synthetic data and any analytic results 

conducted on them are as close to those from the original data as possible. 

Second, researchers may generate synthetic data to help build, test, and train ML models. 

Synthetic data present an opportunity to access a version of the original data that previously 

could not be used for training, due to privacy concerns. Thus, many existing applications 

generate synthetic data as input into ML models whose primary goal is often similar levels of 

prediction or classification as with the original data, versus obtaining similar parameter estimates 

of a statistical model. It should be noted that researchers have generated artificial data to 

supplement an original dataset, increase its diversity, and train fairer ML models as a result (e.g., 

Feldman et al., 2014; Zhang et al., 2016). To be clear, this type of ‘de-biased synthetic data’ is 

different from the synthetic data discussed in this paper, which are designed to emulate the 

original dataset as closely as possible without any extensions of this nature.  

Third, synthetic data may be generated to inform meta-analyses or integrative data 

analyses that summarize relationships or effect sizes within the existing literature (Curran & 

Hussong, 2009). In this application, synthetic data would allow researchers to more readily share 

their original data, which may help inform more nuanced summaries of a given field (e.g., just as 

item-level meta-analyses have, such as Carpenter et al., 2016). 

For example, if the intended use of synthetic data is to help build, test, and train ML 

models, we will be more concerned with how closely the distribution of the synthetic data 

matches the original data. This includes the marginal and joint distributions of features, the 

correlation structure among features in the original data, and the proportions of various sample 
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types in the original data. Given that GANs perform well in capturing complex distributions and 

correlations in data, using GANs might be a good choice. 

Select Synthetic Data Generation Method  

Once the researcher has a sufficient level of familiarity with the original data and has a 

clear goal for the use of synthetic data, they can select a generation method to use. We will 

mainly introduce methods based on generative adversarial networks (GANs) (Goodfellow et al., 

2014; Goodfellow et al., 2020). GANs consist of two neural networks— the generator and the 

discriminator—that work together to produce high-quality synthetic data (see Figure 2). The 

generator creates data that is rewarded for generating and mimicking an original dataset, while 

the discriminator is rewarded whenever the data is correctly judged to be inauthentic. Through 

this adversarial process, the generator iteratively improves until it can produce data that serve as 

a substitute for the original data. 

GANs can be combined with various statistical principles and other models to form more 

complex and powerful methods, such as Conditional Tabular GAN (CTGAN; Xu and 

Veeramachaneni, 2018; Xu et al., 2019) and Copula GAN (Kamthe et al., 2021). Readers should 

keep in mind that each method has its strengths and limitations, and what works well for one 

dataset or application might not be suitable for another. The right tool for the right job, 

understand and select the appropriate synthetic data generation method to ensure the preservation 

of original data characteristics and meet the intended use. 
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Figure 2 

GANs Workflow 

 

Note. All GAN-based models share a typical workflow consisting of two main components: the 

Generator and the Discriminator (or Critic). The Generator’s primary role is to produce authentic 

data so the Discriminator cannot differentiate it from the original data. Conversely, the 

Discriminator’s job is to identify whether the input data are actual or fabricated by the Generator. 

Both components enhance their capabilities through their competition, ultimately leading to data 

that more closely resemble the original dataset.  

Identify Relevant Hyperparameters and Optimize Hyperparameters 

Most ML-based synthetic data generative models, including GAN-based models, allow 

researchers to fine-tune various hyperparameters to help ensure that the synthesized data exhibits 

preferred qualities. For example, there are several options available, ranging from epoch (i.e., 

how many times the training data are used to train the model), batch size (i.e., the amount of data 

fed into the model during each training iteration), and learning rates (i.e., the speed at which 
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network parameters are updated during training). Appendix A provides more details on the 

differences between parameters and hyperparameters, as well as several hyperparameters and 

common methods for optimizing hyperparameters.  

Interestingly, the tuning or adjusting of these hyperparameters is highly related to 

computational resources and time, which is also a consideration for generating synthetic data. 

Generally speaking, allowing the model to learn from and emulate the original data, spending 

more training rounds, and using more complex models results in better outcomes (see Appendix 

A). However, this also means investing more time and money; therefore, setting a minimum 

target performance standard is particularly important. The minimum target performance standard 

refers to the lowest acceptable threshold during evaluation, which means it essentially meets or 

nearly meets the intention of generating synthetic data. 

Evaluate the Quality of Synthetic Data  

An important question about synthetic data is how to evaluate its quality relative to the 

original data. Two important evaluation criteria are security and substitutability. We categorized 

the evaluation tests into ‘basic tests’ and ‘use-specific tests.’ Basic tests provide the fundamental 

checks for synthetic data, including descriptive statistics such as means and correlations, which 

are important for any synthetic data. Use-specific tests, on the other hand, focus on the 

performance of synthetic data in target applications. For instance, if the synthetic data are 

intended for training machine learning models, the results should be comparable to those 

obtained with the original data. 

Synthetic Data Quality: Basic Tests. Four basic tests provide a general assessment of 

the security and substitutability of synthetic data. 
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Overlapped Sample Test. This test checks the uniqueness of the synthetic dataset, an 

important step to prevent data replication and overfitting while maintaining data security. 

Specifically, it assesses the proportion of cases in the original and synthetic datasets that share 

the same value. Lower values indicate less overlap, thereby reducing the risk of security 

concerns. 

 

Constrained Reflection Test. This test checks how well each generated value conforms 

to the range of the original variables. By calculating the minimum, maximum, mean, and 

standard deviation in both the original and synthetic datasets, as well as effect sizes capturing the 

differences in these measures, one can demonstrate whether there is sufficient alignment and 

consistency. 

Distribution Kurtosis and Skewness Test. This test checks the distribution characteristics 

of the datasets, allowing one to understand the asymmetry and the ‘tailedness’ of the data 

distribution, which can be important in assessing the quality of the synthetic data. By analyzing 

the kurtosis and skewness, one can determine how closely the synthetic data mimic the original 

dataset in terms of distribution shape. 

Variable Correlation Test. This test checks the correlation between datasets’ variables, 

important for gauging the substitutability of the synthetic data. The datasets reveal 

interrelationships among the variables. We scrutinized how these correlations were shown in 

each generated dataset and computed the mean of these values. 

Synthetic Data Quality: Use-Specific Tests. Along with the basic tests of synthetic data 

quality, researchers must also provide evidence that synthetic data provide reasonable 
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approximations of the parameters that will be of most interest or relevance to the eventual end-

user. Some examples for each of the potential uses include: 

Hypothesis Testing. Researchers intending to generate and share synthetic data as a 

means of allowing others to approximate and extend their work may be particularly concerned 

with whether the synthetic data reproduce the important parameters within their models. Within 

organizational research, these parameters often include factor loadings, regression coefficients, 

and covariances. Thus, demonstrating that these parameter estimates fail to exhibit bias (i.e., 

minimal differences between the values obtained in the original data and the synthetic data), 

have adequate coverage (i.e., overlapping confidence intervals for the synthetic and original 

data), and yield similar conclusions for significance testing across the synthetic and original data 

can help assure future users of the synthetic data of the reproducibility of the results. 

Machine Learning. When using synthetic data to build, train, and test machine learning 

models, the most important criterion may be the model fit. With machine learning models, 

researchers are often less concerned with the value of specific parameter estimates and are 

seeking to identify efficient and accurate means by which they can classify cases or predict 

future values. Examples of model fit estimates, then, that a researcher could use to show that the 

original and synthetic data are returning comparable results include R2, mean square error 

(MSE), and mean absolute error (MAE). 

Meta-Analyses. If using synthetic data to inform meta-analyses or integrative reviews, 

what likely becomes paramount is whether the effect size(s) obtained from synthetic data are 

similar to those from the original data, for all practical purposes, contributing to a meta-analysis 

in the same way as the original study would. Moreover, synthetic data provided across studies 
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might be combined to allow for more refined analyses of moderator effects through multilevel 

modeling, going beyond a moderator analysis of effect sizes in a traditional meta-analysis. 

These examples above—hypothesis testing, machine learning, and meta-analysis—

illustrate that evaluating the quality of synthetic data involves reasoned demonstrations that their 

synthesized data are well-suited for their intended purpose(s). One can therefore never “collect 

stamps” (Landy, 1986) and say categorically that synthetic data are always as good as the 

original dataset. 

Feedback Loop from Data Evaluation Back to Data Generation 

It is likely that during this process researchers will obtain poor results with one, or 

perhaps several, of the basic or use-specific criteria. As such, researchers may adopt a pareto-

optimization approach when evaluating their synthetic data where they seek to reach defensible 

thresholds across multiple criteria and prioritize those that are most important given the intended 

use of the data. As depicted in Figure 1, to achieve such optimization, we anticipate that 

researchers will have to cycle back to some of the initial data generation steps after evaluating 

the synthetic data that are initially obtained. 

 This represents a broader process beyond just tuning hyperparameters. The iterative loop 

for hyperparameter optimization produces good results for a model within a specific range, 

guided by a statistical loss function (see Appendix A). The loss function is a fundamental 

measure for assessing synthetic data. It indicates the degree of inconsistency between the model-

generated values with the original values (e.g., MSE, MAE). The loop from data evaluation back 

to data generation is an overall cycle of generating synthetic data. Through a more detailed 

evaluation, we may decide to adopt different models to improve the quality of the generated 

synthetic data. 
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Additional Considerations 

Before proceeding, there are a few aspects of this workflow that are worth noting. First, 

we acknowledge that the techniques available for synthesizing data are developing rapidly (e.g., 

data generation models, and hyperparameter optimization). Thus, the specific approaches used 

within some of these steps will likely need to evolve as improved techniques emerge. Second, we 

do not presume that this process is solely the responsibility of the researchers (i.e., individual 

synthesizing the data), but should also be something that end-users consider before incorporating 

synthesized data into their own work. That is, the end-user of the synthesized data should use the 

proposed workflow to consider whether there is sufficient information available to determine the 

rigor and quality of the synthetic data given its stated purpose. Third, consistent with broader 

recommendations regarding transparency and open science, this workflow will be most effective 

if researchers disclose the steps used in the synthetic data generation process and provide a 

comprehensive summary of the results of the tests of the evaluation criteria.  

Empirical Demonstration of Synthetic Data and Two Research Questions 

As mentioned before, a primary benefit of a synthetic dataset is that it contains 

analytically interpretable raw data for conducting a wide range of analyses, without sacrificing 

the privacy of the individuals contributing to the dataset. Thus, an important question is assessing 

the extent to which a given synthetic dataset can sufficiently substitute for the original dataset 

that generated it. Addressing this question is important to support the broader use of synthetic 

datasets in organizational research. With the goal of trying to increase the synthetic data’s 

similarity to the original dataset, this must be accomplished in a manner that safeguards the 

sensitive and personal information of respondents. Optimal synthetic data should precisely retain 

the statistical attributes of the original data while minimizing any resemblance, patterns, or 
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details that could inadvertently jeopardize the anonymity and security of participants and their 

data, as found in the original dataset.  

Motivated by these goals, we present two empirical demonstrations of synthetic data that 

address the following research questions: 

Research Question 1 (RQ1): To what extent do synthetic data possess sufficient 

substitutability, as captured original data patterns, to serve as a viable alternative to raw datasets? 

Research Question 2 (RQ2): To what extent do synthetic data possess sufficient security 

and limit the percentage of duplicated cases with the original dataset? 

The analytic codes for both studies are available on GitHub: 

https://github.com/wpengda/SyntheticData_OrganizationalScience. We used the Python SDV 

package (Patki et al., 2016) to generate synthetic data. Data were analyzed using R, version 4.4.0 

(R Core Team, 2024) as well as the psych package version 2.4.6.26 (Revelle, 2024). 

Study 1: Synthetic Data in the Context of Assessment 

Our first study used the General Aptitude Test Battery (GATB) dataset (U.S. Department 

of Labor, 1970). The GATB is an expansive assessment tool that provides nine cognitive 

aptitude scale scores on the basis of 12 tests thought relevant to the prediction of job 

performance. These aptitudes are General Learning Ability (G), Verbal Aptitude (V), Numerical 

Aptitude (N), Spatial Aptitude (S), Form Perceptual (P), Clerical Perception (Q), Motor 

Coordination (K), Finger Dexterity (F), and Manual Dexterity (M) (see Table 2). In addition to 

GATB scores, the dataset contains job performance criterion scores and detailed job descriptions. 

Thus, the GATB dataset is akin to others commonly employed in the context of assessment, 

hiring, and selection (Bemis, 1968; Vevea et al., 1993).
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Table 1 

General Aptitude Test Battery (GATB): Aptitudes and Corresponding Subtests 

Aptitude Definition Subtest(s) 

G-General 

Learning 

Ability 

The ability to “catch on” or understand instructions and underlying principles; the ability to reason 

and make judgments. Closely related to doing well in school. 

Part 3-Three Dimensional 

Space 

Part 4-Vocabulary 

Part 6-Arithmetic Reasoning 

V-Verbal 

Aptitude 

The ability to understand the meaning of words and to use them effectively. The ability to 

comprehend language, to understand relationships between words, and to understand the meaning 

of whole sentences and paragraphs. 

Part 4-Vocabulary 

 

N-Numerical 

Aptitude 

Ability to perform arithmetic operations quickly and accurately. Part 2-Computation 

Part 6-Arithmetic Reasoning 

S-Spatial 

Aptitude 

Ability to think visually of geometric forms and to comprehend the two-dimensional representation 

of three-dimensional objects. The ability to recognize the relationships resulting from the movement 

of objects in space. 

Part 3-Three Dimensional 

Space 

P-Form 

Perception 

Ability to perceive pertinent detail in objects or in pictorial or graphic material. Ability to make 

visual comparisons and discriminations and see slight differences in shapes and shadings of figures 

and widths and lengths of lines. 

Part 5-Tool Matching  

Part 7-Form Matching 

Q-Clerical 

Perception 

 

Ability to perceive pertinent detail in verbal or tabular material. Ability to observe differences in 

copy, to proofread words and numbers, and to avoid perceptual errors in arithmetic computation. A 

measure of the speed of perception which is required in many industrial jobs even when the job 

does not have verbal or numerical content. 

Part 1-Name Comparison 

K-Motor 

Coordination 

Ability to coordinate eyes and hands or fingers rapidly and accurately in making precise movements 

with speed. Ability to make a movement response accurately and swiftly. 

Part 8-Mark Making 

F-Finger 

Dexterity 

Ability to move the fingers, and manipulate small objects with the fingers, rapidly or accurately. Part 11-Assemble 

Part 12-Disassemble 

M-Manual 

Dexterity 

Ability to move the hands easily and skillfully. Ability to work with the hands in placing and 

turning motions. 

Part 9-Place 

Part 10-Turn 

Note. Adapted from U.S. Department of Labor (1970). as cited in Kato & Scherbaum (2023). 
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Participants and Procedure 

The entire GATB dataset consists of 40,489 employees in various occupations who took 

the GATB. For the current study, just for the purpose of an example, we focus on a specific 

occupation: Gambling Dealers (O*NET SOC Code 39-3011.00), which comprises 1,056 

employees. The sex distribution was 57.1% male and 42.9% female. In terms of ethnicity, it is 

predominantly White (85.8%), followed by Black (11.8%), with the remaining 2.4% representing 

other ethnic groups. The measures of the aforementioned nine aptitudes identified in the GATB 

data can also be seen in Table 1. 

Analyses 

To generate the synthetic data for the GATB dataset, we followed the process described 

earlier and depicted in Figure 1. First, we examined the original data and found that some 

variables were skewed and leptokurtic (i.e., non-normal). Subsequently, we hypothesized that the 

synthetic data’s intended use was to assist in building, testing, and training machine learning 

models. We focused on the standardized scores for each of the nine aptitudes identified in the 

GATB data and also included the standard supervisory rating scale as the performance criterion 

(CRFIN) in the analysis. Essentially, the final performance criterion was predicted by these nine 

ability indices. Additionally, the GATB dataset includes demographic variables such as sex and 

race. Therefore, we also wanted to explore whether the original data and synthetic data produced 

similar results under the same demographic variables. 

Based on these purposes, we selected the generative model CTGAN as the method for 

generating synthetic data and adjusting multiple hyperparameters, such as the number of epochs. 

As shown in Figure 1, optimizing hyperparameters is an interactive process, for the sake of 

parsimony, we only present the final results here (i.e., batch size = 128; epoch = 5,000). 
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Study 1 Results 

Basic Test 

Overlapped Sample Test. We began by conducting an overlapped sample test to ensure 

that the synthetic data did not inadvertently create potential security or privacy risks. This test 

indicated that there was no overlap in data cases between the synthetic and original data. This 

suggests a certain level of security in the synthetic data. 

Constrained Reflection Test. Next, constrained reflection test findings are presented in 

Table 2. This table encompasses each variable’s minimum and maximum values, median, mean, 

standard deviation, and Cohen’s d. Cohen’s d, which quantifies the effect size difference 

between original and synthetic data, was less than the small effect threshold of 0.20 in all cases. 

Some people may argue that even a tiny Cohen’s d, like 0.10, reflects meaningful differences. 

However, we believe that if the goal is to detect any difference, regardless of size, then a small 

effect size like 0.10 may warrant attention. On the other hand, if the goal is to identify changes of 

a certain magnitude or greater—such as when we want to create synthetic data that is not the 

same as the original—then such a small effect size might be considered negligible. 
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Table 2 

GATB Subtests and Performance Criterion Descriptive Statistics: Comparing Original Data and 

Synthetic Data  

 Min Max Median Mean SD Ku Sk Cohen’s d 

GATB Subtests 

G 

Original 

Synthetic 

 

69 

66 

 

154 

150 

 

110 

110 

 

109.71 

110.10 

 

14.29 

14.93 

 

2.86 

2.49 

 

0.05 

0.01 

 

 

-0.03 

V 

Original 

Synthetic 

 

63 

63 

 

189 

166 

 

109 

110 

 

108.94 

109.50 

 

14.73 

15.56 

 

3.87 

3.02 

 

0.22 

-0.24 

 

 

-0.04 

N 

Original 

Synthetic 

 

63 

60 

 

148 

146 

 

109 

109 

 

109.86 

108.96 

 

13.87 

15.30 

 

3.02 

2.62 

 

-0.16 

-0.18 

 

 

0.06 

S 

Original 

Synthetic 

 

55 

53 

 

163 

163 

 

107 

108 

 

106.20 

107.73 

 

18.11 

18.16 

 

2.88 

2.95 

 

0.16 

0.08 

 

 

-0.08 

P 

Original 

Synthetic 

 

68 

55 

 

172 

184 

 

120 

121 

 

119.86 

121.16 

 

17.83 

18.33 

 

2.88 

3.03 

 

0.01 

-0.04 

 

 

-0.07 

Q 

Original 

Synthetic 

 

80 

77 

 

185 

189 

 

120 

120 

 

120.93 

120.95 

 

16.13 

16.84 

 

3.32 

3.20 

 

0.44 

0.40 

 

 

-0.00 

K 

Original 

Synthetic 

 

49 

59 

 

161 

169 

 

115 

115 

 

114.33 

114.20 

 

17.08 

17.15 

 

3.06 

3.01 

 

-0.05 

-0.01 

 

 

0.01 

F 

Original 

Synthetic 

 

43 

53 

 

168 

162 

 

109 

107 

 

108.85 

107.02 

 

19.50 

18.41 

 

2.89 

2.75 

 

0.01 

0.03 

 

 

0.10 

M 

Original 

Synthetic 

 

57 

48 

 

196 

186 

 

120 

115 

 

118.86 

115.26 

 

20.42 

20.62 

 

3.06 

2.79 

 

0.01 

0.12 

 

 

0.18 

Performance Criterion 

CRFIN 

Original 

Synthetic 

 

39 

30 

 

120 

118 

 

83 

84 

 

83.66 

83.80 

 

12.39 

12.40 

 

3.31 

3.51 

 

-0.12 

-0.27 

 

 

-0.01 

Note. n = 1,056 for both the original dataset and the synthetic dataset. GATB = General Aptitude 

Test Battery. CRFIN = standard supervisory rating scale. Ku = Kurtosis, Sk = Skewness. Cohen's 

d represents the mean difference between the original data and synthetic data. 
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Distribution Kurtosis and Skewness Test. Table 2 also reports the skewness and 

kurtosis values. The kurtosis for both the original and synthetic data sets showed a high degree of 

similarity across variables, all close to three (Mesokurtic), indicating a nearly normal 

distribution. Although the skewness was also closely matched for most variables, exceptions 

such as V and P exhibited opposite signs, suggesting a divergence in their asymmetry. However, 

given that the skewness values were within the ±0.5 range, we could infer that the distribution of 

these variables was approximately symmetric. This near-symmetry, coupled with the absence of 

pronounced features, might explain why the synthetic data failed to capture the more nuanced 

trends present in the original data. 

Variable Correlation Test. We present the findings of the variable correlation test in 

Table 3. Most of the correlations between the original and synthetic data aligned closely, with 

only a few exhibiting minor differences. The mean absolute difference in the magnitude of 

correlation coefficients across the two datasets was .06, indicating a strong resemblance in 

relational dynamics. Significantly correlated variables in the original dataset generally retained 

their significance in the synthetic dataset. Instances of non-significant correlations or those that 

diverged in direction compared to the original data maintained absolute values below .30. These 

showed weak correlation, meaning that the linear relationship between the two variables was not 

very strong, implying that changes in one variable did not predictably lead to linear changes in 

the other. This also offered a plausible explanation for certain discrepancies observed in the 

synthetic data, where weak correlations were infrequent features. 
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Table 3 

GATB Correlation Matrices: Comparing Original and Synthetic Data 

                  G V N S P Q K F M CRFIN 

Original: 

G 

V 

N 

S 

P 

Q 

K 

F 

M 

CRFIN 

 

Synthetic: 

G 

V 

N 

S 

P 

Q 

K 

F 

M 

CRFIN 

 

1.00 

.78 

.76 

.66 

.45 

.49 

.20 

.14 

.12 

.21 

 

 

1.00 

.74 

.75 

.57 

.50 

.55 

.23 

-.07 

.03 

.08 

 

 

1.00 

.51 

.32 

.31 

.49 

.21 

.05 

.04 

.11 

 

 

 

1.00 

.57 

.27 

.33 

.52 

.23 

-.11 

-.09 

-.01 

 

 

 

1.00 

.28 

.34 

.47 

.22 

.11 

.14 

.24 

 

 

 

 

1.00 

.29 

.43 

.56 

.33 

.01 

.09 

.12 

 

 

 

 

1.00 

.49 

.30 

.10 

.26 

.14 

.13 

 

 

 

 

 

1.00 

.59 

.33 

.10 

.15 

.20 

.17 

 

 

 

 

 

1.00 

.60 

.37 

.34 

.28 

.22 

 

 

 

 

 

 

1.00 

.64 

.40 

.22 

.28 

.22 

 

 

 

 

 

 

1.00 

.36 

.23 

.17 

.14 

 

 

 

 

 

 

 

1.00 

.42 

.08 

.13 

.04 

 

 

 

 

 

 

 

1.00 

.32 

.43 

.16 

 

 

 

 

 

 

 

 

1.00 

.28 

.39 

.11 

 

 

 

 

 

 

 

 

1.00 

.49 

.26 

 

 

 

 

 

 

 

 

 

1.00 

.47 

.20 

 

 

 

 

 

 

 

 

 

1.00 

.25 

 

 

 

 

 

 

 

 

 

 

1.00 

.23 

 

 

 

 

 

 

 

 

 

 

1.00 

 

 

 

 

 

 

 

 

 

 

 

1.00 

Note. n = 1,056 for both original data and synthetic data. GATB = General Aptitude Test Battery. CRFIN = standard supervisory 

rating scale. A correlation magnitude less than .05 is not statistically significant.
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Use-Specific Tests 

Because our purpose was to assist in building, testing, and training ML models, we 

wanted to explore whether the original data and synthetic data produced similar results under the 

same demographic variables. We have conducted several tests as described below: 

Machine Learning Analyses. The ML findings are presented in Table 4, where we 

evaluated the efficacy of four different ML models by comparing their performance on both 

synthetic and original data. We used 80% of the original data to train the model and tested it on 

20% of the original data and 100% synthetic data. The outcomes of the four ML models were 

very similar on both the original test data and the synthetic data, as reflected through metrics 

such as R², MSE, and MAE. These findings suggest that the performance of machine learning 

models on original data closely mirrors that on synthetic data, indicating the interchangeability of 

synthetic data. 

Table 4 

Machine Learning Analyses: Comparing Original Data and Synthetic Data for CRFIN predicted 

by GATB subtests 

 XG Boost 

Regressor 

Cat Boost 

Regressor 

Random Forest LGBM 

Regressor 

R2 

Train Original Data  

Test Original Data  

Synthetic Data  

 

.17 

.10 

.06 

 

.18 

.09 

.07 

 

.17 

.09 

.06 

 

.20 

.08 

.07 

MSE 

Train Original Data 

Test Original Data 

Synthetic Data 

 

127.91 

137.19 

144.02 

 

124.99 

139.04 

142.42 

 

126.77 

138.84 

144.24 

 

122.12 

139.60 

142.64 

MAE 

Train Original Data  

Test Original Data 

Synthetic Data 

 

8.87 

9.17 

9.55 

 

8.79 

9.27 

9.49 

 

8.84 

9.26 

9.54 

 

8.67 

9.32 

9.47 

Note. n = 1,056 for both the original dataset and the synthetic dataset. GATB = General Aptitude 

Test Battery. CRFIN = standard supervisory rating scale. We use five-fold cross-validation and 
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get an average for R2, MSE, and MAE. R2 = coefficient of determination; MSE = mean squared 

error; MAE = mean absolute error. 

Gender and Race Differences in Descriptive Statistics. Gender difference findings are 

summarized in Table 5. For both males and females, the mean and standard deviation of the 

synthetic dataset aligned closely with those of the original dataset. Additionally, the Cohen’s d 

values were relatively consistent across both datasets. On average, the absolute difference in 

Cohen’s d between the synthetic and original datasets for gender was 0.09. 

Race difference findings are also presented in Table 5. As with gender, the differences 

between the White and Black groups in the synthetic data were close to those in the original data. 

The mean and standard deviation showed similar patterns, and Cohen’s d maintained directional 

consistency and largely similar magnitudes. On average, the absolute difference in Cohen’s d 

between the synthetic and original datasets for gender was 0.14. 
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Table 5 

GATB Subtests and Performance Criterion Standardized Mean Differences: Comparing Original 

and Synthetic Data by Gender and Race 

 Male Female Cohen’s d White Black Cohen’s d 

G 

Original 

Synthetic 

 

110.99 (14.51) 

111.21 (15.73) 

 

107.99 (13.82) 

108.61 (13.67) 

 

0.21 

0.18 

 

111.57 (13.50) 

111.74 (14.34) 

 

97.15 (12.76) 

98.30 (13.33) 

 

1.10 

0.97 

V 

Original 

Synthetic 

 

108.19 (15.08) 

108.14 (16.85) 

 

109.95 (14.21) 

111.31 (13.44) 

 

-0.12 

-0.21 

 

110.51 (14.08) 

110.75 (15.40) 

 

99.52 (13.86) 

102.41 (12.45) 

 

0.78 

0.60 

N 

Original 

Synthetic 

 

111.48 (13.71) 

110.34 (15.83) 

 

107.70 (13.79) 

107.14 (14.38) 

 

0.27 

0.21 

 

111.17 (13.42) 

109.75 (15.35) 

 

100.54 (13.18) 

102.31 (13.11) 

 

0.80 

0.52 

S 

Original 

Synthetic 

 

106.82 (19.22) 

108.11 (19.77) 

 

105.38 (16.49) 

107.23 (15.76) 

 

0.08 

0.05 

 

107.69 (17.77) 

109.36 (17.34) 

 

95.18 (16.91) 

95.84 (19.66) 

 

0.72 

0.73 

P 

Original 

Synthetic 

 

117.59 (18.12) 

119.49 (18.76) 

 

122.87 (16.99) 

123.39 (17.52) 

 

-0.30 

-0.22 

 

121.32 (16.95) 

123.17 (17.33) 

 

109.65 (19.96) 

107.25 (18.83) 

 

0.63 

0.88 

Q 

Original 

Synthetic 

 

118.12 (15.63) 

117.97 (17.50) 

 

124.66 (16.05) 

124.92 (15.04) 

 

-0.41 

-0.43 

 

121.99 (15.83) 

122.07 (16.64) 

 

113.40 (16.13) 

112.21 (15.72) 

 

0.54 

0.61 

K 

Original 

Synthetic 

 

112.43 (17.46) 

111.30 (17.44) 

 

116.84 (16.24) 

118.06 (15.98) 

 

-0.26 

-0.40 

 

115.12 (16.89) 

114.86 (16.91) 

 

108.03 (16.26) 

108.03 (16.30) 

 

0.43 

0.41 

F 

Original 

Synthetic 

 

104.93 (19.39) 

101.47 (16.73) 

 

114.08 (18.41) 

114.42 (17.97) 

 

-0.48 

-0.75 

 

109.53 (19.20) 

106.77 (18.06) 

 

102.55 (20.27) 

106.23 (19.59) 

 

0.35 

0.03 

M 

Original 

Synthetic 

 

119.40 (21.00) 

115.43 (21.59) 

 

118.13 (19.62) 

115.04 (19.28) 

 

0.06 

0.02 

 

119.90 (20.21) 

115.90 (20.48) 

 

110.45 (20.05) 

109.93 (20.96) 

 

0.47 

0.29 

CRFIN 

Original 

Synthetic 

 

83.65 (12.46) 

83.24 (12.22) 

 

83.67 (12.29) 

84.56 (12.61) 

 

-0.00 

-0.11 

 

84.23 (12.24) 

84.34 (11.96) 

 

79.19 (12.07) 

79.25 (12.84) 

 

0.41 

0.41 

Note. n = 1,056 for both the original dataset and the synthetic dataset. GATB = General Aptitude 

Test Battery. Standard deviations are in parentheses. Cohen’s d represents the difference between 

male and female effect sizes and the difference between the white and black effect sizes. 
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Study 1 Discussion 

This first empirical demonstration showed the application of synthetic data to GATB 

data. We conducted basic tests and use-specific tests to determine whether synthetic data based 

on an ML generative model possessed sufficient substitutability and security. It can be seen that 

the model estimates were generally quite close. Although we did not show the feedback loop 

from data evaluation back to data generation in this demonstration, it is important to note that 

whenever a creator of synthetic data is not satisfied with the evaluation results, they can choose 

to use different synthetic data generation methods or adjust hyperparameters (see Appendix A). 

This iterative process is important for improving the quality and accuracy of synthetic data. 

Furthermore, even when the same model and the same hyperparameters are employed, the 

resulting synthetic data can differ due to the random sampling of data. Differences might be 

reflected in the value of single data points rather than the overall structure and pattern of the 

dataset.  

We now transition to demonstrate the iterative process with a very different dataset to 

illustrate the different analytic choices one must consider, depending on the dataset. 

Study 2: Synthetic Data with Multi-source Ratings 

For Study 2, we applied our synthetic data approach to a multi-source assessment of 

leadership. Such assessments, also referred to as 360-degree feedback assessments, are 

commonly applied in leadership development programs and can help leaders understand how 

they perceive themselves and how they are perceived by others (Fleenor et al., 2010; Lee & 

Carpenter, 2018). Areas of consensus, as well as those where disagreements emerge (i.e., “blind 

spots”), can help inform subsequent leadership development (Atwater et al., 1998). 

Because these assessments typically feature multiple rating sources as well as multiple 

dimensions of leadership, they represent a distinct data structure than what was synthesized in 
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Study 1, with a structure that is similar to those found across several areas of the organizational 

sciences (e.g., assessment centers, performance appraisals; Meriac et al., 2014). 

Participants and Procedure 

Study 2 data consist of multi-source ratings of 16,752 leaders. Leaders and their 

colleagues completed a multi-source leadership assessment that measures dimensions relevant to 

entry-level leaders. Prior research has found that this assessment exhibits evidence of adequate 

internal consistency, interrater reliability, content validity, construct validity (e.g., patterns of 

correlations among dimensions), and criterion-related validity (e.g., correlations with measures 

of leader effectiveness; Leslie & Braddy, 2015).  

The assessment includes two broad categories that organize the lower-order dimensions: 

Leading the Organization and Leading Others. These broad categories largely and respectively 

correspond to the prevailing theoretical models of task- vs. relationship-focused perceptions of 

leadership behaviors (Gerpott et al., 2019; Meriac et al., 2014; Shaffer et al., 2016). Within the 

Leading the Organization category, there are four dimensions (with corresponding sample 

items):  

(1) strategic perspective – “Links their responsibilities with the mission of the whole 

organization”;  

(2) being a quick study – “Learns a new skill quickly;”  

(3) decisiveness – “Is action-oriented;”  

(4) change management – “Adapts plans as necessary.”  

The Leading Others category consists of seven dimensions:  

(5) leading employees – “Is willing to delegate important tasks, not just things they don't 

want to do;”  
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(6) confronting problem employees – “Can deal effectively with resistant employees;”  

(7) participative management – “Is open to the input of others;”  

(8) building collaborative relationships - “Tries to understand what other people think 

before making judgments about them;”  

(9) compassion and sensitivity – “Is sensitive to signs of overwork in others;”  

(10) putting people at ease – “Has personal warmth.”; and  

(11) respect for differences – “Treats people of all backgrounds fairly.”.1  

The 11 scales were measured using three to thirteen items rated on a 5-point scale ranging from 1 

(“To a very little extent”) to 5 (“To a very great extent”).  

Raters also provide ratings of a leader’s likelihood to derail, which reflects challenges or 

issues that if, unaddressed, likely limit one’s effectiveness in a leadership position (Atwater et 

al., 1998). These include  

(1) problems with interpersonal relationships – “Is dictatorial in their approach;”  

(2) difficulty building and leading a team – “Does not resolve conflict among direct 

reports.”;  

(3) difficulty changing or adapting – “Has not adapted to the culture of the organization;” 

(4) failure to meet business objectives – “Is overwhelmed by complex tasks;”  

(5) too narrow a functional orientation – “Could not handle management outside of 

current function.” 

Aside from the leader’s self-ratings, an average of 9.95 raters (SD = 3.65) rated each 

leader. A total of 150,062 raters are reflected in the data, including 65,635 direct reports, 67,507 

 
1
 The assessment also contained dimensions categorized as “Leading Yourself.” However, for the sake of 

parsimony, and because these pertain to constructs beyond typical areas of emphasis within leadership literature 

(e.g., career management, work-life balance), we have excluded these from our analyses. 
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peers, and 16,920 superiors. For each source, we created aggregate scores for each type of rater 

and each dimension by averaging across all items within a given type of rater for each 

dimension. These aggregate scores served as input for our analyses. 

Analyses 

To generate synthetic multi-source leadership assessment data, we followed the process 

described earlier and depicted in Figure 1. First, we examined the original data and found that, 

much like other rating-based evaluations in the organizational sciences, most variables were 

significantly skewed and leptokurtic (i.e., non-normal). Thus, most leaders were rated above the 

midpoint along each competency and below the midpoint for the derailment ratings. Second, we 

also determined that our intended use of these synthetic data would be to allow others to examine 

and replicate prior hypothesis testing (Braddy et al., 2014). Specifically, our goal was to 

synthesize data that reproduced earlier findings, which could then be shared with other 

researchers interested in self-other agreement leadership research (Fleenor et al., 2010). These 

steps helped inform our decision to select a CTGAN synthetic data model and to tune several 

hyperparameters (i.e., epoch and batch size). Although this reflects an iterative process, for the 

sake of parsimony, we only share the results of the best-performing model (i.e., batch size = 128; 

epoch = 3000). 

Study 2 Results 

Basic Tests 

Overlapped Sample Test. As with Study 1, we began by conducting an overlapped 

sample test to ensure that the synthetic data did not inadvertently create potential security or 

privacy risks. This test indicated that there was no overlap in data cases across the synthetic and 

original data. This provides more assurance of the security of the synthetic data. 
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Constrained Reflection Test. Next, we conducted a constrained reflection test, where 

we compared the mean and standard deviations for the original and synthetic data. Across the 

different competencies and measures of derailment, and rating sources, the average absolute 

Cohen’s d value was 0.06 (SD = 0.04, min. = 0.00, max. = 0.19) (see Table 6). This suggests 

that, on average, the distributions of the variables in the synthetic data exhibited comparable 

measures of central tendency (i.e., mean) and variability (i.e., standard deviation) when 

compared to the original data. 

Distribution Kurtosis and Skewness Test. Table 6 also reports the skewness and 

kurtosis values for each variable in the original and synthetic data. On average, the absolute 

difference in the skewness and kurtosis values were 0.22 and 0.92. Further inspection revealed 

that the items pertaining to derailment tended to exhibit the largest differences across the 

synthetic and original data.  

Variable Correlation Test. We then considered the variable correlation test and 

examined the differences in the correlations obtained using the synthetic and original data. 

Across all items and rating sources, we compared 2,016 correlations (i.e., each cell in the 

complete matrix). On average, the absolute difference in the correlation estimates was .07 (SD 

= .00, min = . 00, max = .30). Figure 3 provides a histogram summarizing these differences, 

which shows that 80% of the correlation estimates exhibited differences less than or equal to .10.  

Taken as a whole, we found that, when compared to the original data, the synthetic data 

exhibited minimal differences in the means and standard deviations (i.e., Cohen’s d), that for 

many variables there were comparable levels of skewness and kurtosis, and that the majority of 

correlations were reproduced with relatively small differences. Thus, we proceeded to our use-

specific tests.
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Table 6 

360 Assessment Original Data and Synthetic Data Descriptive Statistics  

Dimension Data Source Min Max Median Mean SD Kurtosis Skewness Cohen’s d 

Problems 

with 

interperson

al 

relationship

s Original Superior 1.00 5.00 1.25 1.44 0.58 4.99 2.02  

 Synthetic Superior 1.00 5.00 1.25 1.47 0.63 5.09 2.14 0.13 

 Original 

Direct 

Report 1.00 5.00 1.31 1.46 0.50 4.89 1.92  

 Synthetic 

Direct 

Report 1.00 5.00 1.37 1.52 0.58 6.17 2.25 0.08 

 Original Peer 1.00 5.00 1.38 1.52 0.49 3.92 1.70  

 Synthetic Peer 1.00 5.00 1.36 1.47 0.45 3.24 1.56 0.07 

 Original Self 1.00 5.00 1.25 1.43 0.47 5.35 1.80  

 Synthetic Self 1.00 5.00 1.30 1.46 0.54 6.00 1.98 0.11 

Difficulty 

building 

and leading 

a team Original Superior 1.00 5.00 1.43 1.59 0.58 2.11 1.22  

 Synthetic Superior 1.00 4.62 1.52 1.58 0.56 2.66 1.38 0.08 

 Original 

Direct 

Report 1.00 5.00 1.43 1.55 0.48 3.32 1.47  

 Synthetic 

Direct 

Report 1.00 4.36 1.45 1.54 0.50 3.55 1.68 0.04 

 Original Peer 1.00 5.00 1.56 1.64 0.48 2.51 1.20  

 Synthetic Peer 1.00 5.00 1.50 1.56 0.44 3.25 1.29 0.05 

 Original Self 1.00 5.00 1.57 1.58 0.49 2.07 0.96  

 Synthetic Self 1.00 3.65 1.57 1.57 0.48 -0.16 0.58 0.06 

Difficulty 

changing 

or adapting Original Superior 1.00 5.00 1.40 1.51 0.53 3.98 1.63  
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Dimension Data Source Min Max Median Mean SD Kurtosis Skewness Cohen’s d 

 Synthetic Superior 1.00 4.79 1.39 1.48 0.48 3.05 1.44 0.09 

 Original 

Direct 

Report 1.00 5.00 1.35 1.45 0.42 5.63 1.88  

 Synthetic 

Direct 

Report 1.00 4.56 1.39 1.48 0.48 8.23 2.42 0.06 

 Original Peer 1.00 5.00 1.48 1.56 0.43 3.95 1.48  

 Synthetic Peer 1.00 4.05 1.52 1.62 0.47 2.38 1.42 0.04 

 Original Self 1.00 5.00 1.40 1.51 0.43 4.35 1.30  

 Synthetic Self 1.00 3.57 1.42 1.50 0.42 0.80 0.94 0.07 

Failure to 

meet 

business 

objectives Original Superior 1.00 5.00 1.33 1.51 0.58 3.28 1.58  

 Synthetic Superior 1.00 3.82 1.34 1.49 0.48 0.46 0.99 0.10 

 Original 

Direct 

Report 1.00 5.00 1.38 1.50 0.47 4.73 1.80  

 Synthetic 

Direct 

Report 1.00 5.00 1.39 1.57 0.61 7.19 2.43 0.05 

 Original Peer 1.00 5.00 1.50 1.60 0.47 3.06 1.39  

 Synthetic Peer 1.00 4.31 1.48 1.57 0.49 2.78 1.44 0.12 

 Original Self 1.00 5.00 1.50 1.59 0.49 2.05 1.02  

 Synthetic Self 1.00 3.72 1.50 1.59 0.50 0.23 0.81 0.11 

Too narrow 

a 

functional 

orientation Original Superior 1.00 5.00 1.70 1.82 0.74 0.72 0.98  

 Synthetic Superior 1.00 5.00 1.81 1.84 0.71 0.39 0.81 0.07 

 Original 

Direct 

Report 1.00 5.00 1.47 1.59 0.51 3.42 1.54  

 Synthetic 

Direct 

Report 1.00 5.00 1.48 1.58 0.56 6.89 2.22 0.01 

 Original Peer 1.00 5.00 1.73 1.83 0.58 1.21 0.97  

 Synthetic Peer 1.00 4.95 1.77 1.87 0.65 0.58 0.88 0.02 

 Original Self 1.00 5.00 1.60 1.72 0.58 0.92 0.84  
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Dimension Data Source Min Max Median Mean SD Kurtosis Skewness Cohen’s d 

 Synthetic Self 1.00 4.04 1.78 1.73 0.56 -0.31 0.53 0.17 

Strategic 

perspective Original Superior 1.13 5.00 4.13 4.09 0.54 0.60 -0.53  

 Synthetic Superior 1.13 5.00 4.09 4.05 0.56 2.12 -1.01 0.03 

 Original 

Direct 

Report 1.54 5.00 4.36 4.30 0.41 2.22 -1.06  

 Synthetic 

Direct 

Report 1.54 5.00 4.37 4.35 0.41 2.94 -1.14 0.07 

 Original Peer 1.33 5.00 4.20 4.16 0.41 1.53 -0.75  

 Synthetic Peer 1.33 5.00 4.20 4.12 0.51 2.37 -1.19 0.07 

 Original Self 1.50 5.00 4.00 4.04 0.44 0.07 -0.12  

 Synthetic Self 2.25 5.00 4.01 4.07 0.45 -0.43 0.10 0.12 

Being a 

quick study Original Superior 1.00 5.00 4.33 4.23 0.59 0.52 -0.61  

 Synthetic Superior 2.54 5.00 4.24 4.25 0.55 -0.40 -0.40 0.03 

 Original 

Direct 

Report 1.33 5.00 4.33 4.30 0.47 2.29 -1.08  

 Synthetic 

Direct 

Report 1.33 5.00 4.33 4.32 0.51 5.08 -1.65 0.04 

 Original Peer 1.00 5.00 4.25 4.21 0.45 1.72 -0.82  

 Synthetic Peer 1.78 5.00 4.24 4.23 0.45 1.52 -0.81 0.13 

 Original Self 1.33 5.00 4.00 3.95 0.60 -0.31 -0.14  

 Synthetic Self 2.02 5.00 4.00 3.95 0.60 -0.25 -0.15 0.05 

Decisivene

ss Original Superior 1.00 5.00 4.00 4.07 0.63 0.61 -0.62  

 Synthetic Superior 1.51 5.00 4.03 4.08 0.60 0.56 -0.57 0.00 

 Original 

Direct 

Report 1.22 5.00 4.33 4.24 0.47 1.88 -0.98  

 Synthetic 

Direct 

Report 1.22 5.00 4.26 4.24 0.47 4.05 -1.35 0.02 

 Original Peer 1.33 5.00 4.17 4.11 0.47 1.11 -0.69  

 Synthetic Peer 1.33 5.00 4.16 4.10 0.51 1.33 -0.81 0.01 

 Original Self 1.00 5.00 4.00 3.90 0.61 0.05 -0.27  

 Synthetic Self 1.98 5.00 4.00 3.89 0.61 -0.02 -0.39 0.06 
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Dimension Data Source Min Max Median Mean SD Kurtosis Skewness Cohen’s d 

Change 

manageme

nt Original Superior 1.00 5.00 4.00 4.00 0.53 0.57 -0.33  

 Synthetic Superior 1.42 5.00 4.00 4.04 0.47 1.06 -0.21 0.04 

 Original 

Direct 

Report 1.44 5.00 4.20 4.17 0.45 1.48 -0.81  

 Synthetic 

Direct 

Report 1.44 5.00 4.18 4.13 0.49 3.61 -1.42 0.07 

 Original Peer 1.00 5.00 4.07 4.05 0.43 1.27 -0.57  

 Synthetic Peer 1.79 5.00 4.04 3.98 0.53 1.26 -0.81 0.12 

 Original Self 1.78 5.00 3.89 3.92 0.45 0.05 0.09  

 Synthetic Self 2.51 5.00 3.98 3.94 0.48 -0.17 0.10 0.09 

Leading 

employees Original Superior 1.00 5.00 4.00 3.98 0.53 0.45 -0.35  

 Synthetic Superior 1.51 5.00 4.00 4.01 0.55 0.66 -0.38 0.06 

 Original 

Direct 

Report 1.09 5.00 4.18 4.13 0.48 1.44 -0.86  

 Synthetic 

Direct 

Report 1.09 5.00 4.17 4.17 0.51 1.82 -0.94 0.04 

 Original Peer 1.25 5.00 4.05 4.02 0.45 1.16 -0.60  

 Synthetic Peer 1.25 5.00 3.98 3.93 0.53 4.11 -1.35 0.05 

 Original Self 1.69 5.00 3.85 3.89 0.45 -0.03 0.02  

 Synthetic Self 2.18 5.00 3.85 3.86 0.48 -0.20 0.03 0.03 

Confrontin

g problem 

employees Original Superior 1.00 5.00 3.83 3.74 0.65 0.26 -0.39  

 Synthetic Superior 1.21 5.00 3.75 3.75 0.59 0.54 -0.33 0.00 

 Original 

Direct 

Report 1.00 5.00 4.00 3.96 0.56 0.93 -0.71  

 Synthetic 

Direct 

Report 1.00 5.00 4.00 4.01 0.57 1.61 -0.92 0.02 

 Original Peer 1.00 5.00 3.89 3.84 0.56 0.90 -0.61  

 Synthetic Peer 1.00 5.00 3.86 3.86 0.61 1.03 -0.71 0.00 

 Original Self 1.25 5.00 3.50 3.57 0.58 0.11 -0.13  
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Dimension Data Source Min Max Median Mean SD Kurtosis Skewness Cohen’s d 

 Synthetic Self 1.25 5.00 3.58 3.56 0.59 0.21 -0.25 0.01 

Participativ

e 

manageme

nt Original Superior 1.00 5.00 4.00 4.08 0.55 0.59 -0.45  

 Synthetic Superior 1.40 5.00 4.06 4.05 0.54 1.40 -0.78 0.02 

 Original 

Direct 

Report 1.56 5.00 4.22 4.17 0.48 1.57 -0.92  

 Synthetic 

Direct 

Report 1.56 5.00 4.25 4.21 0.52 2.44 -1.17 0.07 

 Original Peer 1.00 5.00 4.11 4.07 0.46 1.43 -0.75  

 Synthetic Peer 1.17 5.00 4.12 4.04 0.56 1.88 -1.04 0.08 

 Original Self 1.89 5.00 4.00 4.01 0.46 -0.06 -0.05  

 Synthetic Self 2.14 5.00 4.00 3.99 0.46 -0.09 -0.11 0.14 

Building 

collaborati

ve 

relationship

s Original Superior 1.00 5.00 4.00 4.03 0.59 0.70 -0.59  

 Synthetic Superior 1.14 5.00 4.02 4.03 0.58 1.01 -0.64 0.03 

 Original 

Direct 

Report 1.43 5.00 4.24 4.17 0.49 1.82 -1.00  

 Synthetic 

Direct 

Report 1.43 5.00 4.19 4.13 0.56 3.03 -1.38 0.05 

 Original Peer 1.00 5.00 4.10 4.05 0.49 1.43 -0.84  

 Synthetic Peer 1.00 5.00 4.15 4.11 0.54 1.63 -0.87 0.09 

 Original Self 1.29 5.00 4.00 3.94 0.45 0.11 -0.03  

 Synthetic Self 2.72 5.00 4.00 3.96 0.47 -0.33 0.09 0.19 

Compassio

n and 

sensitivity Original Superior 1.00 5.00 4.17 4.20 0.50 0.36 -0.44  

 Synthetic Superior 2.03 5.00 4.20 4.19 0.49 0.39 -0.53 0.06 

 Original 

Direct 

Report 1.60 5.00 4.31 4.25 0.45 1.52 -0.92  
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Dimension Data Source Min Max Median Mean SD Kurtosis Skewness Cohen’s d 

 Synthetic 

Direct 

Report 1.60 5.00 4.31 4.29 0.46 2.23 -1.08 0.02 

 Original Peer 1.00 5.00 4.18 4.16 0.44 1.70 -0.75  

 Synthetic Peer 1.00 5.00 4.14 4.08 0.48 2.57 -1.09 0.08 

 Original Self 1.33 5.00 4.00 4.05 0.49 0.10 -0.30  

 Synthetic Self 2.56 5.00 4.01 4.10 0.50 -0.88 0.10 0.03 

Putting 

people at 

ease Original Superior 1.00 5.00 4.33 4.34 0.60 0.57 -0.83  

 Synthetic Superior 2.37 5.00 4.34 4.36 0.55 -0.03 -0.62 0.02 

 Original 

Direct 

Report 1.00 5.00 4.44 4.36 0.50 1.79 -1.16  

 Synthetic 

Direct 

Report 1.72 5.00 4.48 4.39 0.51 2.43 -1.36 0.05 

 Original Peer 1.00 5.00 4.39 4.32 0.49 1.57 -0.99  

 Synthetic Peer 1.40 5.00 4.43 4.36 0.50 0.87 -0.90 0.08 

 Original Self 1.00 5.00 4.00 4.05 0.61 -0.26 -0.30  

 Synthetic Self 1.87 5.00 4.01 4.10 0.64 -0.23 -0.44 0.06 

Respect for 

differences Original Superior 1.00 5.00 4.50 4.49 0.51 1.09 -0.93  

 Synthetic Superior 2.74 5.00 4.51 4.52 0.46 0.41 -0.89 0.05 

 Original 

Direct 

Report 1.25 5.00 4.58 4.52 0.39 3.95 -1.43  

 Synthetic 

Direct 

Report 1.62 5.00 4.64 4.56 0.38 5.50 -1.70 0.01 

 Original Peer 1.00 5.00 4.50 4.45 0.39 2.91 -1.06  

 Synthetic Peer 2.17 5.00 4.49 4.41 0.41 1.66 -1.02 0.09 

 Original Self 2.00 5.00 4.50 4.44 0.50 -0.18 -0.63  

 Synthetic Self 3.04 5.00 4.74 4.50 0.49 -0.75 -0.60 0.12 

Note. n = 16,752 for the original dataset and 15,000 for the synthetic dataset. Cohen’s d represents the difference between the original 

data and synthetic data’s effect size.
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Figure 3 

Histogram of Absolute Differences in Correlation Estimates Between the Original and Synthetic 

Data 

 

Note. The complete correlation difference matrix, featuring differences across 2,080 cells, is 

provided in Appendix A. 
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Use-Specific Tests  

As noted previously, our intended purpose of these synthetic data was to generate data 

that would reproduce findings previously reported pertaining to the relationship between self-

other agreement for task and relationship leadership and derailment (Braddy et al., 2014). 

Specifically, this model regressed peers’ ratings of derailment onto a leader’s self-ratings and 

their superiors’ ratings of task and relationship leadership. 

To begin, we sought to reduce the number of competencies in the assessment to the two-

dimensional space reported in the earlier study (i.e., task and relationship leadership).  

Thus, we fit an exploratory factor analysis (EFA) that forced a two-factor solution onto the 11 

leadership competencies for both self-ratings and superior’s ratings.2 Across the 22 factor 

loadings, we found that the average absolute difference between the original and synthetic data 

was .03 (SD = .02, min. = .00, max. = .07). This suggests that factor analyses returned 

comparable solutions across the original and synthetic data. 

Next, we proceeded to identify more defensible measures of task and relationship 

leadership by identifying items that contributed to a clear factor structure and were not 

redundant. Thus, we selected items whose relative loadings (i.e., item loading for a factor/sum of 

all loadings) were greater than .70 for a given. This resulted in two competencies for the task 

leadership dimension (i.e., decisiveness and confronting problem employees) and two on the 

relationship leadership dimension (i.e., compassion and putting people at ease). We also 

 
2
 The EFA was estimated using minimum residuals and varimax rotations (Revelle, 2024). We also 

inspected a scree plot for the EFA, which indicated that the elbow exhibited a marked flattening for two dimensions. 

Because each leader was evaluated by multiple raters (e.g., several peers), and we chose to average across multiple 

raters within a given category, systematic variance in ratings that can be attributable to types of raters are omitted 

from these models. Thus, these EFA results largely ignore this source of variability in the 360 evaluations. 
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calculated a mean derailment score by averaging across peers’ ratings on the five derailment 

items. 

Using these measures, we estimated polynomial regression models in both the original 

and synthetic data, which are direct replications of Braddy et al.’s (2014) models. Table 7      

reports the model results for both data sets. In general, the two datasets produced models that 

largely yielded similar results. Specifically, both models indicated that the more a leader and 

their supervisor rated their task or relationship leadership higher, the less likely the leader’s peers 

were to believe that the leader would derail. Ultimately, this yielded consistent estimates of the 

two primary response surface tests: the linear effects of the line of congruence (a1) and the linear 

effects of the line of incongruence (a3). Specifically, for both datasets, the more leaders and their 

superiors (dis)agreed about their level of task and relationship leadership, the (more) less likely 

their peers were to indicate that the leader was likely to derail. These findings are largely similar 

to those reported by Braddy et al. (2014) and, more importantly to our current work, are 

consistent across both datasets. To allow for further comparisons of the polynomial regression 

results, we generated response surfaces for each model using the original and synthetic data (see 

Figure 4). The surfaces generated when predicting leader derailment using task and relationship 

ratings are consistent when based on the original and synthetic data. 
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Table 7 

Self-Other Agreement Polynomial Regression Models for Original and Synthetic Data 

 Perceptions of Task Leadership 

 Original Data Synthetic Data 

Variable b SE p b SE p 

Self-ratings -0.04 0.06 .55 -0.20 0.07 <.01 

Supervisor ratings -0.36 0.06 <.01 -0.64 0.06 <.01 

Self-ratings2 0.00 0.01 .94 0.00 0.01 .68 

Self-ratings * Supervisor ratings 0.03 0.01 .02 0.07 0.01 <.01 

Supervisor ratings2 0.02 0.01 .01 0.03 0.01 <.01 

       

Response Surface Tests       

a1 -0.40 0.09 <.01 -0.85 0.10 <.01 

a2 0.05 0.01 <.01 0.10 0.01 <.01 

a3 0.32 0.08 <.01 0.44 0.09 <.01 

a4 -0.01 0.02 .66 -0.04 0.02 .04 

 Perceptions of Relationship Leadership 

 Original Data Synthetic Data 

Variable B SE p b SE p 

Self-ratings -0.07 0.09 .44 -0.06 0.10 .53 

Supervisor ratings -0.67 0.09 <.01 -1.03 0.10 <.01 

Self-ratings2 -0.03 0.01 .02 -0.05 0.01 <.01 

Self-ratings * Supervisor ratings 0.04 0.02 <.01 0.09 0.02 <.01 

Supervisor ratings2 0.04 0.01 <.01 0.06 0.01 <.01 

       

Response Surface Tests       

a1 -0.74 0.14 <.01 -1.09 0.15 <.01 

a2 0.05 0.02 <.01 0.09 0.02 <.01 

a3 0.60 0.12 <.01 0.97 0.13 <.01 

a4 -0.03 0.03 .18 -0.08 0.03 <.01 

Note. n = 16,752 for the original dataset and 15,000 for the synthetic dataset. R2 for ratings of 

derailment based on the polynomial regression models was .12 when using the original data 

and .10 for the synthetic data.
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Figure 4 

Response Surfaces for Polynomial Regression Models Based on Original and Synthetic Data

 

Note. Responses surfaces are based on the results of the polynomial regression models reported 

in Table 7. Surfaces on the left-hand side correspond to those based on models using the original 

data, while the surfaces on the right-hand side are based on models using the synthetic data. n = 

16,752 for the original dataset and 15,000 for the synthetic data.
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Study 2 Discussion 

Our second application of synthetic data to an organizational context drew on multi-

source leadership ratings. We believe this is a useful addition to Study 1 because these data are 

largely non-normally distributed (i.e., skewed and leptokurtic), reflect a higher dimensional 

space (i.e., several variables being synthesized at once), and exhibit fairly strong correlations 

among the measures. Thus, in many ways, we see these data as a relatively stringent test of the 

capabilities of synthetic data models and suspect that in many other situations (e.g., more 

normality, less measures, greater discrimination), state-of-the-art synthetic data models would 

perform even better. 

Overall, the synthetic data were able to reproduce previously estimated models using 360 

data (Braddy et al., 2014) and produce results that were quite similar to the original data. That 

said, there were some areas of imprecision. For example, the predictive relationship between 

self-ratings of task leadership are somewhat larger with the synthetic data than the original data 

(-0.20 vs. -0.04) and the non-linear effect of the line of incongruence (i.e., a4 response surface 

parameters) are non-significant only in the synthetic data for both task and relationship 

leadership. We suspect that further training of a synthetic data model with additional 

hyperparameter tuning may reduce these differences. Here, though, it is important to highlight 

that these comparisons are not based on simulated data. That is, we generated the data 

synthetically and then began conducting analyses and fitting potential models. Thus, the data are 

not geared towards a single analysis (e.g., exploratory factor analysis, polynomial regression 

model), but instead are intended to preserve many of the features of the original data. 

Lastly, it is important to reemphasize that developing a suitable synthetic data generation 

model is usually an iterative process. Specifically, as indicated in Figure 1, we examined several 
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alternative synthetic data generation models (e.g., Copula GAN) and employed a range of 

hyperparameters (e.g., batch sizes that included 128, 256, and 500 and epochs including 500, 

1,000, 2,000, and 3,000).3 For the sake of parsimony, though, we only share the results of the 

best-performing model (i.e., batch size = 128; epoch = 3,000). However, it is critical to highlight 

that researchers who generate synthetic data will likely need to consider several data generation 

models and employ a range of hyperparameters until they are satisfied with the results of the 

various quality tests. 

General Discussion 

In this research, we develop a system framework to guide the synthetic data generation 

and evaluation processes, facilitating the application of synthetic data in organizational research. 

Using this framework, we present two empirical demonstrations in Studies 1 and 2 to illustrate 

how synthetic data can serve as a potential alternative when the use of original data is 

impractical, restricted, or poses privacy concerns. Our goal is to provide organizational 

researchers and practitioners with a general understanding of the principles behind generating 

synthetic data, inspiring them to further explore synthetic data methodologies and their use in 

organizational research. 

Potential Limitations and Ethical Considerations 

The use of synthetic data offers a realm of fresh prospects for exploration and 

advancement. However, like every technological stride, it comes with its set of challenges. What 

we want to emphasize the most is that synthetic data offer an alternative when sharing original 

data is impractical, restricted, or poses privacy concerns, but it cannot completely replace 

original data. Synthetic data are inevitably a variation of the original data. Therefore, although 

 
3
 Complete results of the quality tests for these alternative synthetic data models are available on GitHub: 

https://github.com/wpengda/SyntheticData_OrganizationalScience. 
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modeling or analysis performed on synthetic data may approach the effectiveness of using 

original data, there will still be additional risks. We believe that synthetic data can be used as a 

tool to promote information sharing and research, but more regulations are needed as well as 

transparent reporting of the assumptions discussed in this work. For example, when presenting 

findings derived from synthetic data, researchers should very clearly state the source of the data 

to avoid it being misunderstood as the original data and explain the models and hyperparameters 

used to generate the synthetic data (see Appendix A for more information about 

hyperparameters). 

In addition, the quality of synthetic data is highly dependent on the quality of the original 

data used to generate it; if the original data contains any errors in the quantitative information or 

in understanding the nature of the variables, the synthetic counterpart will also reflect those 

flaws. And generating high-quality synthetic data requires a high degree of technical and 

algorithmic knowledge. The quality of the synthesized data depends on the quality of the 

generative model used. If the model does not properly capture the key characteristics of the 

original data, the generated data may not provide accurate insights. For some specific 

applications or complex data structures, further research and development may be required to 

generate synthetic data effectively. Apart from that, even though synthetic data are not directly 

sourced from real-world individuals, the potential for disclosure exists (Abowd & Vilhuber, 

2008). Synthetic data are not automatically private and also require careful use and regulation. 

Nevertheless, we believe that through further research, organizational study can better 

understand and benefit from synthetic data. 

Finally, we encourage researchers to ensure that they abide by rules and regulations 

regarding data sharing. When in doubt regarding data sharing, authors should contact their 
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oversight departments for clarification. For instance, institutional review boards may still require 

a statement such as this on consent forms for human subjects even if synthetic data are to be 

shared in place of original data: “For future research studies, we might use the survey data you 

provide to generate de-identified synthetic data. We might also share this non-identifiable 

synthetic data with other researchers for future research studies without requiring additional 

consent from you.” Other entities, such as firms or database owners may have additional rules 

that may still need to be followed even with synthetic data. 

Future Directions and Research Implications 

We believe that synthetic data offer organizational researchers an opportunity to use 

previously inaccessible data. However, as emphasized in this paper, a myriad of factors - 

including varied methodologies for generating synthetic data and the fine-tuning of 

hyperparameters - substantially influence both the substitutability and the security of the 

synthetic data produced. These elements significantly dictate the overall quality of the resultant 

datasets. This paper thus provides an overview of the nature of synthetic data and, via two 

empirical examples, how they are generated and tested for their quality. Also provided in 

Appendix A is a general overview of parameters, hyperparameters, and optimization when 

generating synthetic data. In future organizational research addressing synthetic data, these 

aspects also require further exploration and research. 

Another idea in future research is to consider generating multiple synthetic datasets from 

an original dataset, and not just one. . Due to the inherent randomness of machine learning 

methods, each synthetic dataset generated from an original dataset is bound to be different. One 

could then conduct a comprehensive analysis of the set of synthetic datasets to shed further light 

on the nature of the original dataset and the robustness of the synthetic dataset generation.  
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Moreover, we think encouraging cross-disciplinary collaborations—such as facilitating 

exchanges between computer scientists, statisticians, and organizational scientists—can 

introduce unprecedented methods and ideas. Only through close cooperation among all parties 

can we fully explore and utilize the vast potential of synthetic data, driving the field of 

organizational research to new heights. As a final future direction, we suggest that there is a need 

and potential benefit to explore the use of synthetic data on unstructured, qualitative data (e.g., 

interview or focus group transcripts). 

Conclusion 

 The open science movement has sought to promote the sharing of data as such a practice 

can serve to accelerate the advancement of theory, practice, and policy making. However, 

concerns remain about the need to protect human subjects and proprietary information. The 

creation of synthetic data is one means to promote open data while still honoring ethical and 

legal concerns. In the current paper, we reviewed the key steps in an iterative process needed to 

generate synthetic data. These include the consideration of a number of assumptions as well as 

basic and specific-use tests in order to evaluate the quality of synthetic data. We then 

demonstrated the use of these steps on two unique example datasets. We hope that this work 

serves to promote greater sharing of data in the organizational sciences.
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Appendix A 

Parameters & Hyperparameters  

Before we begin, it is important to define some terms commonly used in the field of ML, 

similar to how various terms are defined in psychology. We will introduce the concepts of 

parameters and hyperparameters in the sections below. 

Parameters are elements that can be initialized and updated through the learning process, 

such as the weights of neurons in a neural network. In contrast, hyperparameters, which cannot 

be directly estimated from data, must be set before training a machine learning model. They also 

define the model’s architecture (Kuhn & Johnson, 2013). The process of designing an ideal 

model architecture with the best configuration of hyperparameters is known as hyperparameter 

optimization/tuning. This tuning is considered an important component in building effective ML 

models (Hutter et al., 2019). 

Common Hyperparameters  

Common hyperparameters include (Hutter et al., 2019; Yang & Shami, 2020): 

1. Learning rates: These rates determine the speed at which network parameters are updated 

during training, directly impacting learning efficiency. 

2. Number of epochs: This defines how many times the complete dataset is used to train the 

model, which can affect both training duration and model accuracy. 

3. Batch size: This hyperparameter sets the amount of data fed into the model during each 

training iteration, affecting both the speed and stability of the training process. 

4. Optimization algorithms: Optimization algorithm refers to a method employed in ML to 

adjust the parameters of a model. The goal is to either minimize or maximize a specific function, 
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often the loss function. Options such as Adam or SGD can significantly influence the 

effectiveness and speed of training. 

5. Network architecture: Elements like the number of hidden layers and neurons per layer play 

important roles in determining the model’s learning capability and complexity. 

6. Noise dimension: The dimension of the input noise vector for the generator influences the 

diversity of the data generated. 

Loss Function & Optimize Hyperparameters 

 In addition, we would like to briefly introduce how to optimize hyperparameters. 

Optimizing hyperparameters is usually aimed at minimizing the loss function. The loss function 

is a measure of the difference between the model’s output and the true labels; for synthetic data, 

it measures how close the output is to the original data. By minimizing this function, the 

synthetic data generated by the model can be improved. Generally speaking, different goals and 

models will choose different loss functions. Common loss functions include the MSE and the 

MAE. GANs-based models have a generator and a discriminator, each with its own loss 

function. And following are common methods for optimizing hyperparameters (Yang & Shami, 

2020). 

1. Model-free algorithms optimization: These refer to optimization methods that do not rely on 

a clear mathematical description of the underlying model. For example, Manual Search is a very 

basic method where hyperparameters are manually adjusted by individuals based on their 

experience and intuition, also known as ‘trial and error’ or babysitting (Abreu, 2019). Another 

example is Grid Search, which is essentially a method of exhaustive search. For each 

hyperparameter, users select a small finite set to explore (Goodfellow et al., 2016). The Cartesian 

product of these hyperparameters results in several combinations, and Grid Search trains models 
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using each combination to select the one with the smallest loss function value as the best 

hyperparameters (Hutter et al., 2019).  

2. Gradient-based optimization: This is a traditional optimization technique, which computes 

the gradient of variables to identify promising directions and move towards the optimal direction 

(Bengio, 2000). By randomly selecting a data point or a small subset of data, this technique 

updates the model parameters by moving in the opposite direction of the gradient computed for 

that sample or subset, thus taking a step towards minimizing the loss function. Therefore, after 

convergence, it can achieve a local optimum. For certain machine learning algorithms, the 

gradient of some hyperparameters can be computed, and then gradient descent is used to 

optimize these hyperparameters. However, it can only be used to optimize continuous 

hyperparameters, as other types of hyperparameters (e.g., the depth of the decision tree; the 

number of layers in the network structure; the choice of activation function) do not have a 

gradient direction. Moreover, this is only effective for convex functions, as non-convex functions 

might only reach a local rather than a global optimum. 

3. Bayesian optimization: This method uses a probabilistic approach to predict the performance 

of various hyperparameters and updates the model as more results are observed (Snoek et al., 

2012). The key idea is to balance exploration—testing hyperparameters where the model’s 

predictions are uncertain—and exploitation—focusing on hyperparameters that are predicted to 

yield the best performance. In Bayesian optimization, a surrogate model, often a Gaussian 

process, is used to model the unknown function linking hyperparameters to an objective 

function, such as model accuracy. Gaussian processes are favored for their ability to provide a 

smooth estimate and naturally incorporate prediction uncertainty. An acquisition function, such 

as expected improvement, probability of improvement, or upper confidence bound, is then used 
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to select the next set of hyperparameters to be evaluated, optimizing the use of the surrogate 

model (Frazier, 2018). Compared to methods like grid search, Bayesian optimization can identify 

more effective hyperparameters with significantly fewer evaluations (Injadat et al., 2018). 

Should We Worry About Overfitting for Synthetic Data? 

Beyond that, overfitting is a common issue in ML, characterized by a model performing 

exceptionally well on training data but poorly on new, unseen data. This typically occurs because 

the model has learned the noise and specific details in the training data instead of the underlying 

true patterns of the data. But given our objective—to learn and mimic the training data as 

precisely as possible but not as same as the training data—generating synthetic data may mean 

that ‘overfitting’ is not necessarily a problem to be avoided. Common signs of overfitting, such 

as the model perfectly learning the training data, might actually be desirable. By this, here are 

several strategies that can help ensure the model learns from and emulates the training data. 

1. Increase model complexity: Use more complex network architectures to ensure the network 

has sufficient capacity to capture and learn the complex patterns and details in the data. 

2. Extend training duration: Increase the number of training iterations (number of epochs) until 

the model performs exceptionally well on the training set. This helps ensure the model learns as 

much information as possible from the training data. 

 We would like to emphasize again that the purpose here is to generate synthetic data as 

close to the original data as possible to protect privacy—not to predict the overall trend of a data. 

Therefore, the potential ‘overfitting’ associated with these methods should not be a concern in 

this context.

 

 

 

 


