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Abstract
The importance of data sharing in organizational science is well-acknowledged, yet the field faces hurdles that prevent this, 
including concerns around privacy, proprietary information, and data integrity. We propose that synthetic data generated 
using machine learning (ML) could offer one promising solution to surmount at least some of these hurdles. Although this 
technology has been widely researched in the field of computer science, most organizational scientists are not familiar with 
it. To address the lack of available information for organizational scientists, we propose a systematic framework for the 
generation and evaluation of synthetic data. This framework is designed to guide researchers and practitioners through the 
intricacies of applying ML technologies to create robust, privacy-preserving synthetic data. Additionally, we present two 
empirical demonstrations using the ML method of generative adversarial networks (GANs) to illustrate the practical appli-
cation and potential of synthetic data in organizational science. Through this exploration, we aim to furnish the community 
with a foundational understanding of synthetic data generation and encourage further investigation and adoption of these 
methodologies. By doing so, we hope to foster scientific advancement by enhancing data-sharing initiatives within the field.

Keywords  Synthetic data · Machine learning · Open science · Data sharing

Today’s era of open science critically involves the sharing of 
data to strengthen scientific understanding, evidence-based 
practice, and policy making (Banks et al., 2019; Nosek et al., 
2015). Yet, organizational researchers and other social sci-
entists are often hesitant to share their data (e.g., Hardwicke 
et al., 2021; Towse et al., 2020; Vanpaemel et al., 2015; 
Wicherts et al., 2006). Vanpaemel et al. (2015) offered a tell-
ing example, by reporting that out of 394 data requests made 
across four American Psychological Association (APA) jour-
nals, a mere 150 researchers (38%) ultimately shared their 
data. The open science movement hopes to reverse this trend, 
where journals and the federal government are beginning to 

encourage, strongly recommend, or even require the shar-
ing of data and materials, as found in the Transparency and 
Openness Promotion (TOP) guidelines of the Open Science 
Framework (Nosek et al., 2015). In the scholarly context, 
data-sharing activities seek to boost transparency, by allow-
ing for analytic reanalysis and reproducibility, bolstering the 
credibility of scientific research (Pew Research Center, 2019; 
Towse et al., 2020). Moreover, the availability of open data 
allows for additional extended analyses, in addition to much 
greater flexibility and power when conducting meta-analyses 
across studies that provide the raw data.

Compounding this problem are many challenges to shar-
ing data in organizations. Ensuring anonymity is one of 
them, given that organizations entrusted with employee and 
job applicant data seek to keep the identity of individuals 
not only anonymous but completely private. Other reasons 
are that organizations stand to gain a competitive advantage 
from the data they glean insights from and do not share. 
Additionally, they avoid the risk of reputational damage 
by not sharing data that might reveal unfavorable informa-
tion about the organization. Keeping these types of ethi-
cal, privacy, and proprietary issues well in mind, we believe 
that synthetic data could offer one promising solution to 
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surmounting at least some of these hurdles, for those organi-
zations seeking to be thought leaders by participating in sci-
entific activities in the aforementioned spirit of data sharing 
and open science.

Jordon et al. (2022) defined synthetic data as “data that 
have been generated using a purpose-built mathematical 
model or algorithm, with the aim of solving a (set of) data 
science task(s).” If one were to rely on this definition, Monte 
Carlo simulation data could also be considered synthetic 
data. For example, researchers can simulate data for subse-
quent t-tests, ANOVAs, regression, SEM, and other forms of 
modeling and hypothesis testing (e.g., generating simulation 
data using the mvnorm function within the MASS pack-
age in R; Venables & Ripley, 2002). But simulations are 
based on specifying underlying parameters and distributions 
beforehand (e.g., a multivariate normal variance–covariance 
matrix and its associated mean structure). Thus, simulations 
generate data based on known parameters and attendant 
distributional assumptions; these data are then analyzed to 
see whether those parameters and assumptions can be well 
approximated by sample-based estimates.

In this paper, our definition of synthetic data slightly dif-
fers from that of Jordon et al. (2022). We emphasize the 
distinction between synthetic data and simulation data: while 
simulation data is generated based on multivariate distribu-
tional assumptions, synthetic data are generated by learn-
ing from the multivariate distribution of the original dataset 
itself. The goal is for analyses performed on synthetic data 
to closely mirror those performed on the original data. A 
synthetic dataset therefore serves as an alternative to the 
original dataset, allowing one to mirror the original data in 
its realism and complexity while still ensuring data privacy 
and protection for the original data owners (Raghunathan, 
2021). With these advantages, synthetic data can promote 
open data sharing in organizational research, encouraging 
academic-practitioner research partnerships that align with 
the recent and strengthening development of open science 
initiatives in the field (Castille et al., 2022).

At the same time, despite the strengths of synthetic data, 
it is essential to highlight that their security and substitut-
ability are critically influenced by many important design 
factors. For example, for synthetic data to serve as a rea-
sonable substitute for the original data, researchers need 
to determine their intended use, evaluate the efficacy and 
effectiveness of synthetic data generation techniques closely, 
and ensure stringent data anonymity and otherwise uphold 
ethical, privacy, and proprietary standards.

The primary goal of our paper is to develop a systematic 
framework that guides organizational researchers through 
the synthetic generation and evaluation processes, as we are 
unaware of any such resources available to organizational 
scientists. This framework helps readers consider, generate, 
interpret, and use synthetic data from a broad perspective. 

Through two specific examples, we will demonstrate how to 
apply machine learning (ML) generative models to learn from 
a given dataset. Although the ML method we explain and 
use is called generative adversarial networks (GANs), readers 
should know there are many other ML options for generating 
synthetic data. However, covering those here would detract 
from the central goal of our paper. Based on this framework, 
we also provide two empirical demonstrations. Ultimately, 
our goal is not to serve as a definitive resource, but rather to 
provide organizational scientists and practitioners with a gen-
eral understanding and rationale behind generating synthetic 
data, hoping they will be motivated to pursue synthetic data 
methodologies further and expand upon our efforts.

We also discuss ideas for navigating potential ethical 
dilemmas and risks associated with developing and apply-
ing synthetic data (Porter, 2008; United Kingdom Statistics 
Authority, 2022). Taken as a whole, our research invites the 
broader integration of synthetic data within the organiza-
tional sciences, helping to unlock organizational data that 
has remained restricted, inaccessible, and thus ultimately 
lost over time (Wicherts et al., 2006). Ultimately, as more 
high-quality synthetic data are shared that strikes an appro-
priate balance between accessibility and privacy, we envi-
sion both organizational science and evidence-based practice 
to benefit greatly.

Synthetic Data: Answering Key Questions

The term “synthetic data” is a relatively unfamiliar concept 
for most organizational scientists. When encountering a new 
research method, four main questions usually need answers: 
What is this method? Why should we use this method? How 
does this method differ from previous methods? How should 
we implement this method? Below, we will address each of 
these four questions in turn as they pertain to synthetic data.

What Are Synthetic Data?

In this paper, we define synthetic data as artificially gener-
ated data designed to emulate the original data as closely 
as possible without revealing actual observations in that 
data. The purpose is to provide an alternative to original 
data in situations where using original data is impractical, 
poses privacy concerns, is disallowed (e.g., organizationally, 
legally, and ethically), or is otherwise restricted (Fonseca & 
Bacao, 2023; Jordon et al., 2022).

Consider an original dataset containing 1000 data points. 
The corresponding synthetic dataset will also consist of 
1000 data points. However, it will result from a process 
that begins with random noise and iterates to approximate 
the original dataset (e.g., GANs). This iterative process 
ensures that the two datasets do not exactly overlap, thereby 
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protecting the privacy of the data. At the same time, both 
datasets will have similar multivariate distributional proper-
ties, ensuring that the synthetic dataset can substitute for the 
original dataset with very similar analytic results, no matter 
what analysis is used.

For example, consider a dataset containing detailed per-
formance metrics for all NBA players in a season, including 
well-known players like LeBron James. The original data-
set might include precise statistics such as points per game, 
assists, rebounds, and other performance indicators for each 
player (e.g., value over replacement). If we generate a syn-
thetic dataset based on these original data, the new dataset 
will maintain the overall distribution of these performance 
metrics—such as average points per game or the range of 
assists across players—without directly replicating the sta-
tistics of any specific individual, including LeBron James. 
When generating the synthetic data, data obfuscation will be 
achieved by starting with noise and learning each player’s 
metric features from the original dataset. The aim is that 
while individual data points are perturbed and become diffi-
cult to distinguish, the overall multivariate distribution char-
acteristics are preserved, thereby maintaining the statistical 
properties of the original data while hiding individual data 
points. As a result, the synthetic data can be shared freely 
and used for analyses requiring statistical properties similar 
to the original data, with the added benefit of protecting the 
privacy of actual players.

It is important to note that original datasets typically com-
prise quantitative observations sampled from a larger popula-
tion. Consequently, synthetic data is intended to imitate the 
multivariate distributional characteristics of the original data. 
As a result, the quality of synthetic data is closely tied to the 
quality of the raw data. In other words, if the original data 
contains non-representative samples, measurement error, 
extensive missing data, and other undesirable qualities (e.g., 
small sample sizes), then the synthetic data will necessarily 
reflect that, as the saying goes: “garbage in, garbage out.”

Why Would One Synthesize Data?

Privacy issues have always been an obstacle to data sharing 
with researchers (Gabriel & Wessel, 2013; Leavitt, 2013). 
Rubin (1993) highlighted the privacy risks of sharing micro-
data (i.e., information about individual transactions) and the 
complex legal issues it presents. He suggested using imputed 
synthetic data as a solution, where confidential information 
in a dataset is replaced with estimates generated from an 
imputation model, using the same background variables 
without disclosing the original sensitive data. Whereas 
imputations require assuming and estimating a model that 
underlies the data, ML-based methods can learn the model 
from the data themselves, thus improving upon Rubin’s 
ideas. We will illustrate the use of one type of ML generative 

model, generative adversarial networks, or GANs (Good-
fellow et al., 2014, 2020). The GAN procedure begins as 
noisy data but then shapes itself into a synthetic dataset as it 
learns its distributional form from an actual dataset. There-
fore, a synthetic dataset based on a GAN does not contain 
any actual individual data.

Synthetic data primarily serves as a substitute for original 
data, particularly when the original data cannot be easily 
shared due to privacy concerns or other restrictions, such 
as the low rates of individual-level participant data sharing 
in the medical and health sciences (Hamilton et al., 2023). 
The issue of data availability has been persistent. For exam-
ple, Alsheikh-Ali et al. (2011) found that high-impact jour-
nals do not always ensure the public availability of research 
data, with only 9% depositing full primary raw data online. 
Wicherts et al. (2006) found that 73% of scholars did not 
share data. Hardwicke et al. (2021) reported that even with 
a mandatory data-sharing policy in the journal Cognition, 
around 20% of researchers still withheld their data. Tedersoo 
et al. (2021) observed that although there has been some 
progress in recent years, data availability and the willing-
ness to share data remain very low. Moreover, based on our 
own experiences and discussions with colleagues, we have 
consistently encountered significant challenges in securing 
organizational data that can be freely shared with others. 
While we are often permitted to publish findings derived 
from organizational data—typically in collaboration with 
organizational partners—the raw data remain inaccessible. 
This restriction applies not only to external researchers who 
might wish to verify or build upon our findings but also to 
peer reviewers assessing the rigor of our work. The inability 
to share data creates a substantial barrier to transparency and 
reproducibility in organizational research.

We believe that synthetic data can serve as a method to 
promote data sharing, and some studies have already adopted 
this approach. For example, Nowok et al. (2017) demon-
strated that this method had been used in some UK longitu-
dinal studies for data-sharing purposes. By using synthetic 
data as a substitute for original data, researchers can partially 
address issues like those mentioned by Couture et al. (2018), 
where data that cannot be shared initially may become nearly 
irretrievable later on, making it almost impossible to recover 
if it is not published (e.g., if the first author cannot be found, 
or if they retire or change affiliations). Colavizza et al. (2020) 
also indicated that articles containing data tend to have a 
greater impact, and providing synthetic data can help pro-
mote the dissemination of the article to some extent. We 
hope this paper can serve as a starting point for the use of 
synthetic data in organizational research, provide a general 
understanding and rationale behind generating synthetic 
data, and call for more thought and research on synthetic 
data within the field.
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How Do Synthetic Data Compare to Data Generated 
by Existing Methods?

In order to highlight the features of synthetic data, we 
compare it with similar but distinct data from two existing 
methods: anonymizing data and simulating data.

Anonymizing or De‑identifying Data

Anonymization is the process of removing or altering per-
sonal identifiers from original data so that the individuals 
described by the original data become anonymous. Often, 
it involves changing or removing those variables that could 
directly or indirectly lead to identifying individuals in the 
dataset. Anonymized data have some use, but their value 
can be compromised due to having to remove, combine, 
or alter key features of the original dataset. For example, 
removing demographic information directly results in the 
inability to study these variables; binning the data as a 
solution to keeping individual demographics anonymous 
would limit the variability of the data (Cohen, 1983) and 
limit the appropriate analyses and inferences that can be 
made as well. By contrast, synthetic data offer several 
advantages over simply anonymizing the original data. 
When produced well, synthetic data do not contain the 
original data of any individuals, thus offering a higher 
level of privacy than simply removing personal informa-
tion from the original dataset. Likewise, synthetic data do 
not require removing or combining variables, thus retain-
ing the essential qualities of the original data. In contrast 
with the previous example, demographic information can 
often still be retained as part of a synthetic dataset.

When the anonymization of data does not impact its sub-
sequent analysis, anonymized data are generally more useful 
than synthetic data. For example, if demographic informa-
tion in the original data is not central to the research, then 
best practice might be to remove this information before 
sharing the data. However, the key issue that, in fact, moti-
vates this paper is that proprietary concerns, privacy regu-
lations, and other legal and ethical imperatives may restrict 
the sharing of organizational data or certain important parts 
of the data, which affect subsequent analysis. It is in these 
situations where synthetic data serve as an important alterna-
tive, to allow for data sharing, replicating past analyses on 
the original data, and conducting new analyses to gain new 
insights from the data that would otherwise be inaccessible.

Simulating Data

Often researchers are unsure of the distinction between syn-
thetic data and simulated data. Monte Carlo simulations, for 
example, are generated based on parameter estimates (e.g., a 

range of correlations or specific values, say estimates from 
a meta-analysis). These estimates are then incorporated into 
prespecified models (e.g., regression, ANOVA) to generate 
data with modeled distributional assumptions (e.g., multi-
variate normality with prespecified variances and covari-
ances, specific proportions in each group, psychometric reli-
ability and validity estimates, subgroup mean differences). 
Although this simulation-based approach affords the user 
tremendous flexibility and control over the data-generating 
mechanism, the simulated data (and its underlying model 
and parameters) may or may not be generalizable to the real 
world. By contrast, synthetic data are generated using an 
actual dataset to develop the best approximation of that data-
set using ML models (in our case, GANs). Because synthetic 
data are derived from the original data, there are no distri-
butional assumptions, and results are intended to reflect and 
thus generalize to the original dataset.

In conclusion, although simulated data offers versatility 
and control for theoretical exploration, synthetic data pro-
vide a reflection of real-world data (with the good quali-
ties and the bad), making it a powerful tool for substituting 
original data when data sharing is restricted due to privacy 
issues. Researchers should carefully consider the context and 
goals of their study when choosing between these two types 
of data, balancing the need for theoretical exploration with 
the desire for practical applicability.

How Can a Researcher Synthesize Data?

To facilitate the generation, use, and adoption of synthetic 
datasets within organizational research, we outline a general 
process to guide organizational researchers (see Fig. 1). In 
general, this process consists of two major steps, data gen-
eration, and evaluation, which we have color-coded accord-
ingly. Next, we review each of these steps along with the 
specific considerations within each.

Examine Original Data and Determine Intended Use 
of Synthetic Data

The first step of data generation is to examine the original 
data and determine its intended use for synthesis. The fea-
tures of the original data, and the intended use of the syn-
thetic data, are both key factors in understanding and guiding 
the subsequent steps of the process.

As previously mentioned, synthetic data are generated by 
learning from the multivariate distribution of the original 
dataset itself. However, different ML models have their own 
strengths and adaptability in learning and capturing various 
features. For example, the Gaussian Copula models work 
particularly well for data that are approximately normal or 
can be made approximately normal through transformations. 
On the other hand, GANs work better for capturing complex, 
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high-dimensional distributions, making them suitable for 
more complex data.

For different types of original data, the characteristics of 
different models determine how well they perform in learn-
ing them and generating corresponding synthetic data. Like-
wise, the complexity of relationships may limit the effective-
ness of synthetic data methods. Greater complexity in the 
relationships between variables makes generating accurate 
synthetic data more challenging, leading to increased com-
putational complexity. Besides that, the intended use of the 
synthetic data also influences our choice of generative model 
selection and evaluation. Different intended uses mean that 

the synthetic data need to focus on learning different attrib-
utes of the original data, and different generation methods 
may be better suited for producing specific attributes.

We foresee at least three possible uses of synthetic data. 
First, researchers who cannot share their original data 
may generate and share synthetic data so that others can 
approximate and perhaps extend their original analyses 
(e.g., hypothesis tests, factor analyses, structural equation 
models). Note that the original data may not have satisfied 
the assumptions of the statistical models used (e.g., homo-
scedasticity for regression analysis), and results may not 
have been statistically significant. Nonetheless, the goal for 

Fig. 1   Flow chart summarizing 
the general process steps for 
synthesizing data. Note: GANs, 
generative adversarial networks; 
VAEs, variational autoencoders
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synthetic data is to be as close to the original data as possi-
ble, so that the properties of synthetic data and any analytic 
results conducted on them are as close to those from the 
original data as possible.

Second, researchers may generate synthetic data to help 
build, test, and train ML models. Synthetic data present an 
opportunity to access a version of the original data that pre-
viously could not be used for training, due to privacy con-
cerns. Thus, many existing applications generate synthetic 
data as input into ML models whose primary goal is often 
similar levels of prediction or classification as with the origi-
nal data, versus obtaining similar parameter estimates of a 
statistical model. It should be noted that researchers have 
generated artificial data to supplement an original dataset, 
increase its diversity, and train fairer ML models as a result 
(e.g., Feldman et al., 2014; Zhang et al., 2016). To be clear, 
this type of “de-biased synthetic data” is different from the 
synthetic data discussed in this paper, which are designed to 
emulate the original dataset as closely as possible without 
any extensions of this nature.

Third, synthetic data may be generated to inform meta-
analyses or integrative data analyses that summarize rela-
tionships or effect sizes within the existing literature (Curran 
& Hussong, 2009). In this application, synthetic data would 
allow researchers to more readily share their original data, 
which may help inform more nuanced summaries of a given 
field (e.g., just as item-level meta-analyses have, such as 
Carpenter et al., 2016).

For example, if the intended use of synthetic data is to 
help build, test, and train ML models, we will be more con-
cerned with how closely the distribution of the synthetic 
data matches the original data. This includes the marginal 
and joint distributions of features, the correlation structure 
among features in the original data, and the proportions of 
various sample types in the original data. Given that GANs 
perform well in capturing complex distributions and correla-
tions in data, using GANs might be a good choice.

Select Synthetic Data Generation Method

Once the researcher has a sufficient level of familiarity 
with the original data and has a clear goal for the use 
of synthetic data, they can select a generation method to 
use. We will mainly introduce methods based on GANs 
(Goodfellow et al., 2014, 2020). GANs consist of two neu-
ral networks—the Generator and the Discriminator—that 
work together to produce high-quality synthetic data (see 
Fig. 2). The Generator creates data that are rewarded for 
generating and mimicking an original dataset, while the 
Discriminator is rewarded whenever the data are correctly 
judged to be inauthentic. The Generator and Discriminator 
will also include additional settings to prevent generating 
samples that are identical or overly similar to the original 

data and to reject any duplicates (e.g., data deduplication; 
Xia et al., 2016). Through this adversarial process, both 
the Generator and Discriminator iteratively improve, ena-
bling them to work together to produce data that serves 
as a substitute for the original, while preserving privacy.

GANs can be combined with various statistical princi-
ples and other models to form more complex and powerful 
methods, such as Conditional Tabular GAN (CTGAN; Xu 
& Veeramachaneni, 2018; Xu et al., 2019) and Copula 
GAN (Kamthe et al., 2021). Readers should keep in mind 
that each method has its strengths and limitations, and 
what works well for one dataset or application might not 
be suitable for another. The right tool for the right job 
understands and selects the appropriate synthetic data gen-
eration method to ensure the preservation of original data 
characteristics and meet the intended use.

Identify Relevant Hyperparameters and Optimize 
Hyperparameters

Most ML-based synthetic data generative models, including 
GAN-based models, allow researchers to fine-tune various 
hyperparameters to help ensure that the synthesized data 
exhibits preferred qualities. For example, there are several 
options available, ranging from epoch (i.e., how many times 
the training data are used to train the model), batch size (i.e., 
the amount of data fed into the model during each train-
ing iteration), and learning rates (i.e., the speed at which 
network parameters are updated during training). Appendix 
provides more details on the differences between parameters 
and hyperparameters, as well as several hyperparameters and 
common methods for optimizing hyperparameters.

Interestingly, the tuning or adjusting of these hyper-
parameters is highly related to computational resources 
and time, which is also a consideration for generating 
synthetic data. Generally speaking, allowing the model to 
learn from and emulate the original data, spending more 
training rounds, and using more complex models results in 
better outcomes (see Appendix). However, this also means 
investing more time and money. Therefore, setting a mini-
mum target performance standard is particularly impor-
tant. The minimum target performance standard refers to 
the lowest acceptable threshold during evaluation, which 
means it essentially meets or nearly meets the intention of 
generating synthetic data.

Evaluate the Quality of Synthetic Data

An important question about synthetic data is how to evaluate 
its quality relative to the original data. Two important evalua-
tion criteria are security and substitutability. We categorized 
the evaluation tests into “basic tests” and “use-specific tests.” 
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Basic tests provide the fundamental checks for synthetic data, 
including descriptive statistics such as means and correlations, 
which are important for any synthetic data. Use-specific tests, 
on the other hand, focus on the performance of synthetic data 
in target applications. For instance, if the synthetic data are 
intended for training ML models, the results should be com-
parable to those obtained with the original data.

Synthetic Data Quality: Basic Tests  Four basic tests provide 
a general assessment of the security and substitutability of 
synthetic data.

Overlapped Sample Test: This test checks the unique-
ness of the synthetic dataset, an important step to prevent 
data replication. Specifically, it assesses the proportion of 
cases in the original and synthetic datasets that share the 
same value. Lower values indicate less overlap, thereby 
reducing the risk of security concerns.
Percentage =

Numberofsamevalues

Totalnumberofvalues
× 100

Constrained Reflection Test: This test checks how well 
each generated value conforms to the range of the original 
variables. By calculating the minimum, maximum, mean, 
and standard deviation in both the original and synthetic 
datasets, as well as effect sizes capturing the differences 
in these measures, one can demonstrate whether there is 
sufficient alignment and consistency.

Distribution Kurtosis and Skewness Test: This test 
checks the distribution characteristics of the datasets, 
allowing one to understand the asymmetry and the 
“tailedness” of the data distribution, which can be impor-
tant in assessing the quality of the synthetic data. By ana-
lyzing the kurtosis and skewness, one can determine how 
closely the synthetic data mimic the original dataset in 
terms of distribution shape.
Variable Correlation Test: This test checks the correla-
tion between datasets’ variables, which is important for 
gauging the substitutability of the synthetic data. The 
datasets reveal interrelationships among the variables. We 
scrutinized how these correlations were shown in each 
generated dataset and computed the mean of these values.

Synthetic Data Quality: Use‑Specific Tests  Along with the 
basic tests of synthetic data quality, researchers must also 
provide evidence that synthetic data provide reasonable 
approximations of the parameters that will be of most inter-
est or relevance to the eventual end-user. Some examples for 
each of the potential uses include as follows:

Hyphothesis Testing: Researchers intending to gen-
erate and share synthetic data as a means of allow-
ing others to approximate and extend their work may 
be particularly concerned with whether the synthetic 

GANs Workflow

Fig. 2   GAN workflow. Note: All GAN-based models share a typi-
cal workflow consisting of two main components: the Generator and 
the Discriminator (or Critic). The Generator’s primary role is to pro-
duce authentic data so the Discriminator cannot differentiate it from 

the original data. Conversely, the Discriminator’s job is to identify 
whether the input data are actual or fabricated by the Generator. Both 
components enhance their capabilities through their competition, ulti-
mately leading to data that more closely resemble the original dataset
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data reproduce the important parameters within their 
models. Within organizational research, these param-
eters often include factor loadings, regression coeffi-
cients, and covariances. Thus, demonstrating that these 
parameter estimates fail to exhibit bias (i.e., minimal 
differences between the values obtained in the original 
data and the synthetic data), have adequate coverage 
(i.e., overlapping confidence intervals for the synthetic 
and original data), and yield similar conclusions for 
significance testing across the synthetic and original 
data can help assure future users of the synthetic data 
of the reproducibility of the results.
Machine Learning: When using synthetic data to 
build, train, and test ML models, the most impor-
tant criterion may be the model fit. With ML models, 
researchers are often less concerned with the value of 
specific parameter estimates and are seeking to iden-
tify efficient and accurate means by which they can 
classify cases or predict future values. Examples of 
model fit estimates, then, that a researcher could use 
to show that the original and synthetic data are return-
ing comparable results include R2, mean square error 
(MSE), and mean absolute error (MAE).
Meta-analyses: If using synthetic data to inform meta-
analyses or integrative reviews, what likely becomes 
paramount is whether the effect size(s) obtained from 
synthetic data are similar to those from the original 
data, for all practical purposes, contributing to a meta-
analysis in the same way as the original study would. 
Moreover, synthetic data provided across studies might 
be combined to allow for more refined analyses of 
moderator effects through multilevel modeling, going 
beyond a moderator analysis of effect sizes in a tradi-
tional meta-analysis.

These examples above—hypothesis testing, ML, and 
meta-analysis—illustrate that evaluating the quality of 
synthetic data involves reasoned demonstrations that 
their synthesized data are well-suited for their intended 
purpose(s). One can therefore never “collect stamps” 
(Landy, 1986) and say categorically that synthetic data 
are always as good as the original dataset. Potential limi-
tations of synthetic data, along with recommendations 
for data sharing, are further discussed in the discussion 
section.

Feedback Loop from Data Evaluation Back to Data 
Generation

It is likely that during this process researchers will obtain poor 
results with one, or perhaps several, of the basic or use-specific 
criteria. As such, researchers may adopt a pareto-optimization 
approach when evaluating their synthetic data where they seek 

to reach defensible thresholds across multiple criteria and pri-
oritize those that are most important given the intended use of 
the data. As depicted in Fig. 1, to achieve such optimization, 
we anticipate that researchers will have to cycle back to some 
of the initial data generation steps after evaluating the synthetic 
data that are initially obtained.

This represents a broader process beyond just tuning hyper-
parameters. The iterative loop for hyperparameter optimiza-
tion produces good results for a model within a specific range, 
guided by a statistical loss function (see Appendix). The loss 
function is a fundamental measure for assessing synthetic data. 
It indicates the degree of inconsistency between the model-
generated values and the original values (e.g., MSE, MAE). 
The loop from data evaluation back to data generation is an 
overall cycle of generating synthetic data. Through a more 
detailed evaluation, we may decide to adopt different models 
to improve the quality of the generated synthetic data.

Additional Considerations

Before proceeding, there are a few aspects of this workflow that 
are worth noting. First, we acknowledge that the techniques 
available for synthesizing data are developing rapidly (e.g., data 
generation models and hyperparameter optimization). Thus, the 
specific approaches used within some of these steps will likely 
need to evolve as improved techniques emerge. Second, we do 
not presume that this process is solely the responsibility of the 
researchers (i.e., individual synthesizing the data), but should 
also be something that end-users consider before incorporating 
synthesized data into their own work. That is, the end-user of the 
synthesized data should use the proposed workflow to consider 
whether there is sufficient information available to determine 
the rigor and quality of the synthetic data given its stated pur-
pose. Third, consistent with broader recommendations regard-
ing transparency and open science, this workflow will be most 
effective if researchers disclose the steps used in the synthetic 
data generation process and provide a comprehensive summary 
of the results of the tests of the evaluation criteria.

Empirical Demonstration of Synthetic Data 
and Two Research Questions

As mentioned before, a primary benefit of a synthetic dataset 
is that it contains analytically interpretable raw data for con-
ducting a wide range of analyses without sacrificing the pri-
vacy of the individuals contributing to the dataset. Thus, an 
important question is assessing the extent to which a given 
synthetic dataset can sufficiently substitute for the original 
dataset that generated it. Addressing this question is impor-
tant to support the broader use of synthetic datasets in organ-
izational research. With the goal of trying to increase the 
synthetic data’s similarity to the original dataset, this must 
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be accomplished in a manner that safeguards the sensitive 
and personal information of respondents. Optimal synthetic 
data should precisely retain the statistical attributes of the 
original data while minimizing any resemblance, patterns, 
or details that could inadvertently jeopardize the anonymity 
and security of participants and their data, as found in the 
original dataset.

Motivated by these goals, we present two empirical 
demonstrations of synthetic data that address the follow-
ing research questions:

Research Question 1 (RQ1): To what extent do syn-
thetic data possess sufficient substitutability, as cap-
tured original data patterns, to serve as a viable alter-
native to raw datasets?
Research Question 2 (RQ2): To what extent do syn-
thetic data possess sufficient security and limit the per-
centage of duplicated cases with the original dataset?

The analytic codes for both studies are available on 
GitHub: https://​github.​com/​wpeng​da/​Synth​eticD​ata_​
Organ​izati​onalS​cience. We used the Python SDV package 
(Patki et al., 2016) to generate synthetic data. Data were 
analyzed using R, version 4.4.0 (R Core Team, 2024), as 
well as the psych package version 2.4.6.26 (Revelle, 2024).

Study 1: Synthetic Data in the Context 
of Assessment

Our first study used the General Aptitude Test Battery 
(GATB) dataset (U.S. Department of Labor, 1970). The 
GATB is an expansive assessment tool that provides nine 
cognitive aptitude scale scores on the basis of 12 tests 
thought relevant to the prediction of job performance. These 
aptitudes are General Learning Ability (G), Verbal Aptitude 
(V), Numerical Aptitude (N), Spatial Aptitude (S), Form 
Perceptual (P), Clerical Perception (Q), Motor Coordination 
(K), Finger Dexterity (F), and Manual Dexterity (M) (see 
Table 1). In addition to GATB scores, the dataset contains 
job performance criterion scores and detailed job descrip-
tions. Thus, the GATB dataset is akin to others commonly 
employed in the context of assessment, hiring, and selection 
(Bemis, 1968; Vevea et al., 1993).

Participants and Procedure

The entire GATB dataset consists of 40,489 employees in vari-
ous occupations who took the GATB. For the current study, 
just for the purpose of an example, we focus on a specific occu-
pation: Gambling Dealers (O*NET SOC Code 39–3011.00), 
which comprises 1056 employees. The sex distribution was 

57.1% male and 42.9% female. In terms of ethnicity, it is pre-
dominantly White (85.8%), followed by Black (11.8%), with 
the remaining 2.4% representing other ethnic groups. The 
measures of the aforementioned nine aptitudes identified in 
the GATB data can also be seen in Table 1.

Analyses

To generate the synthetic data for the GATB dataset, we fol-
lowed the process described earlier and depicted in Fig. 1. 
First, we examined the original data and found that some vari-
ables were skewed and leptokurtic (i.e., non-normal). Subse-
quently, we hypothesized that the synthetic data’s intended 
use was to assist in building, testing, and training ML models. 
We focused on the standardized scores for each of the nine 
aptitudes identified in the GATB data and also included the 
standard supervisory rating scale as the performance criterion 
(CRFIN) in the analysis. Essentially, the final performance 
criterion was predicted by these nine ability indices. Addition-
ally, the GATB dataset includes demographic variables such 
as sex and race. Therefore, we also wanted to explore whether 
the original data and synthetic data produced similar results 
under the same demographic variables.

Based on these purposes, we selected the generative 
model CTGAN as the method for generating synthetic data 
and adjusting multiple hyperparameters, such as the num-
ber of epochs. As shown in Fig. 1, optimizing hyperparam-
eters is an interactive process; for the sake of parsimony, 
we only present the final results here (i.e., batch size = 128; 
epoch = 5000).

Study 1 Results

Basic Test

Overlapped Sample Test.
We began by conducting an overlapped sample test to 

ensure that the synthetic data did not inadvertently create 
potential security or privacy risks. This test indicated that 
there was no overlap in data cases between the synthetic and 
original data. This suggests a certain level of security in the 
synthetic data.

Constrained Reflection Test.
Next, constrained reflection test findings are presented in 

Table 2. This table encompasses each variable’s minimum 
and maximum values, median, mean, standard deviation, and 
Cohen’s d. Cohen’s d, which quantifies the effect size differ-
ence between original and synthetic data, was less than the small 
effect threshold of 0.20 in all cases. Some people may argue that 
even a tiny Cohen’s d, like 0.10, reflects meaningful differences. 
However, we believe that if the goal is to detect any difference, 
regardless of size, then a small effect size like 0.10 may warrant 
attention. On the other hand, if the goal is to identify changes of 

https://github.com/wpengda/SyntheticData_OrganizationalScience
https://github.com/wpengda/SyntheticData_OrganizationalScience
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a certain magnitude or greater—such as when we want to create 
synthetic data that is not the same as the original—then such a 
small effect size might be considered negligible.

Distribution Kurtosis and Skewness Test.
Table 2 also reports the skewness and kurtosis values. The 

kurtosis for both the original and synthetic data sets showed 
a high degree of similarity across variables, all close to three 
(Mesokurtic), indicating a nearly normal distribution. Although 
the skewness was also closely matched for most variables, 
exceptions such as V and P exhibited opposite signs, suggesting 
a divergence in their asymmetry. However, given that the skew-
ness values were within the ± 0.5 range, we could infer that the 
distribution of these variables was approximately symmetric. 
This near-symmetry, coupled with the absence of pronounced 
features, might explain why the synthetic data failed to capture 
the more nuanced trends present in the original data.

Variable Correlation Test.
We present the findings of the variable correlation test in 

Table 3. Most of the correlations between the original and 
synthetic data aligned closely, with only a few exhibiting 
minor differences. The mean absolute difference in the mag-
nitude of correlation coefficients across the two datasets was 
0.06 (SD = 0.05, min = 0.00, max = 0.22), indicating strong 
similarity at this level of correlation. Figure 3 provides a 

histogram summarizing these differences, 76% of the cor-
relation estimates exhibited differences less than or equal 
to 0.10. Significantly correlated variables in the original 
dataset generally retained their significance in the synthetic 
dataset. Instances of non-significant correlations or those 
that diverged in direction compared with the original data 
maintained absolute values below 0.22. This also offered a 
plausible explanation for certain discrepancies observed in 
the synthetic data, where weak correlations were infrequent.

Use‑Specific Tests

Because our purpose was to assist in building, testing, and 
training ML models, we wanted to explore whether the origi-
nal data and synthetic data produced similar results under 
the same demographic variables. We have conducted several 
tests as described below:

Machine Learning Analyses  The ML findings are presented 
in Table 4, where we evaluated the efficacy of four different 
ML models by comparing their performance on both syn-
thetic and original data. We used 80% of the original data to 
train the model and tested it on 20% of the original data and 
100% synthetic data. The outcomes of the four ML models 

Table 1   General Aptitude Test Battery (GATB): aptitudes and corresponding subtests

Note: Adapted from the U.S. Department of Labor (1970). As cited in Kato and Scherbaum (2023) 

Aptitude Definition Subtest(s)

G-General Learning Ability The ability to “catch on” or understand instructions and underlying principles; 
the ability to reason and make judgments. Closely related to doing well in 
school

Part 3-Three-Dimensional Space
Part 4-Vocabulary
Part 6-Arithmetic Reasoning

V-Verbal Aptitude The ability to understand the meaning of words and to use them effectively. The 
ability to comprehend language, to understand relationships between words, 
and to understand the meaning of whole sentences and paragraphs

Part 4-Vocabulary

N-Numerical Aptitude Ability to perform arithmetic operations quickly and accurately Part 2-Computation
Part 6-Arithmetic Reasoning

S-Spatial Aptitude Ability to think visually of geometric forms and to comprehend the two-dimen-
sional representation of three-dimensional objects. The ability to recognize 
the relationships resulting from the movement of objects in space

Part 3-Three-Dimensional Space

P-Form Perception Ability to perceive pertinent detail in objects or in pictorial or graphic material. 
Ability to make visual comparisons and discriminations and see slight differ-
ences in shapes and shadings of figures and widths and lengths of lines

Part 5-Tool Matching
Part 7-Form Matching

Q-Clerical Perception Ability to perceive pertinent detail in verbal or tabular material. Ability to 
observe differences in copy, to proofread words and numbers, and to avoid 
perceptual errors in arithmetic computation. A measure of the speed of per-
ception which is required in many industrial jobs even when the job does not 
have verbal or numerical content

Part 1-Name Comparison

K-Motor Coordination Ability to coordinate eyes and hands or fingers rapidly and accurately in mak-
ing precise movements with speed. Ability to make a movement response 
accurately and swiftly

Part 8-Mark Making

F-Finger Dexterity Ability to move the fingers, and manipulate small objects with the fingers, 
rapidly or accurately

Part 11-Assemble
Part 12-Disassemble

M-Manual Dexterity Ability to move the hands easily and skillfully. Ability to work with the hands 
in placing and turning motions

Part 9-Place
Part 10-Turn
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were very similar on both the original test data and the syn-
thetic data, as reflected through metrics such as R2, MSE, 
and MAE. These findings suggest that the performance of 
ML models on original data closely mirrors that on synthetic 
data, indicating the interchangeability of synthetic data.

Gender and Race Differences in Descriptive Statistics  Gen-
der difference findings are summarized in Table 5. For both 
males and females, the mean and standard deviation of the 
synthetic dataset aligned closely with those of the original 
dataset. Additionally, the Cohen’s d values were relatively 
consistent across both datasets. On average, the absolute 
difference in Cohen’s d between the synthetic and original 
datasets for gender was 0.09.

Race difference findings are also presented in Table 5. As 
with gender, the differences between the White and Black 
groups in the synthetic data were close to those in the origi-
nal data. The mean and standard deviation showed similar 
patterns, and Cohen’s d maintained directional consistency 
and largely similar magnitudes. On average, the absolute 
difference in Cohen’s d between the synthetic and original 
datasets for gender was 0.14.

Study 1 Discussion

This first empirical demonstration showed the application of 
synthetic data to GATB data. We conducted basic tests and 
use-specific tests to determine whether synthetic data based on 
an ML generative model possessed sufficient substitutability 

Table 2   Descriptive 
statistics: GATB subtests and 
performance criterion for 
original data and synthetic data

Note: n = 1056 for both the original dataset and the synthetic dataset. GATB, General Aptitude Test Battery. 
See Table 1 for the names of the GATB measures. CRFIN, standard supervisory rating scale; Ku, kurtosis; 
Sk, skewness. Cohen’s d represents the mean difference between the original data and synthetic data

Min Max Median Mean SD Ku Sk Cohen’s d

GATB subtests
  G
    Original 69 154 110 109.71 14.29 2.86 0.05
    Synthetic 66 150 110 110.10 14.93 2.49 0.01  − 0.03
  V
    Original 63 189 109 108.94 14.73 3.87 0.22
    Synthetic 63 166 110 109.50 15.56 3.02  − 0.24  − 0.04
  N
    Original 63 148 109 109.86 13.87 3.02  − 0.16
    Synthetic 60 146 109 108.96 15.30 2.62  − 0.18 0.06
  S
    Original 55 163 107 106.20 18.11 2.88 0.16
    Synthetic 53 163 108 107.73 18.16 2.95 0.08  − 0.08
  P
    Original 68 172 120 119.86 17.83 2.88 0.01
    Synthetic 55 184 121 121.16 18.33 3.03  − 0.04  − 0.07
  Q
    Original 80 185 120 120.93 16.13 3.32 0.44
    Synthetic 77 189 120 120.95 16.84 3.20 0.40  − 0.00
  K
    Original 49 161 115 114.33 17.08 3.06  − 0.05
    Synthetic 59 169 115 114.20 17.15 3.01  − 0.01 0.01
  F
    Original 43 168 109 108.85 19.50 2.89 0.01
    Synthetic 53 162 107 107.02 18.41 2.75 0.03 0.10
  M
    Original 57 196 120 118.86 20.42 3.06 0.01
    Synthetic 48 186 115 115.26 20.62 2.79 0.12 0.18

Performance Criterion
  CRFIN
    Original 39 120 83 83.66 12.39 3.31  − 0.12
    Synthetic 30 118 84 83.80 12.40 3.51  − 0.27  − 0.01
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and security. It can be seen that the model estimates were gen-
erally quite close. Although we did not show the feedback loop 
from data evaluation back to data generation in this demonstra-
tion, it is important to note that whenever a creator of synthetic 
data is not satisfied with the evaluation results, they can choose 
to use different synthetic data generation methods or adjust 
hyperparameters (see Appendix). This iterative process is 
important for improving the quality and accuracy of synthetic 
data. Furthermore, even when the same model and the same 
hyperparameters are employed, the resulting synthetic data can 
differ due to the random sampling of data. Differences might 
be reflected in the value of single data points rather than the 
overall structure and pattern of the dataset.

We now transition to demonstrate the iterative process 
with a very different dataset to illustrate the different analytic 
choices one must consider, depending on the dataset.

Study 2: Synthetic Data with Multi‑source 
Ratings

For study 2, we applied our synthetic data approach to a 
multi-source assessment of leadership. Such assessments, also 
referred to as 360-degree feedback assessments, are commonly 

applied in leadership development programs and can help lead-
ers understand how they perceive themselves and how they are 
perceived by others (Fleenor et al., 2010; Lee & Carpenter, 
2018). Areas of consensus, as well as those where disagree-
ments emerge (i.e., “blind spots”), can help inform subsequent 
leadership development (Atwater et al., 1998).

Because these assessments typically feature multiple 
rating sources as well as multiple dimensions of leader-
ship, they represent a distinct data structure than what was 
synthesized in study 1, with a structure that is similar to 
those found across several areas of the organizational sci-
ences (e.g., assessment centers, performance appraisals; 
Meriac et al., 2014).

Participants and Procedure

Study 2 data consist of multi-source ratings of 16,752 lead-
ers. Leaders and their colleagues completed a multi-source 
leadership assessment that measures dimensions relevant to 
entry-level leaders. Prior research has found that this assess-
ment exhibits evidence of adequate internal consistency, 
interrater reliability, content validity, construct validity (e.g., 
patterns of correlations among dimensions), and criterion-
related validity (e.g., correlations with measures of leader 
effectiveness; Leslie & Braddy, 2015).

Table 3   GATB correlation 
matrices for original and 
synthetic data

Note: n = 1056 for both original data and synthetic data. GATB, General Aptitude Test Battery. See Table 1 
for the names of the GATB measures. CRFIN, standard supervisory rating scale. A correlation magnitude 
less than 0.05 is not statistically significant

G V N S P Q K F M CRFIN

Original:
  G 1.00
  V 0.78 1.00
  N 0.76 0.51 1.00
  S 0.66 0.32 0.28 1.00
  P 0.45 0.31 0.34 0.49 1.00
  Q 0.49 0.49 0.47 0.30 0.60 1.00
  K 0.20 0.21 0.22 0.10 0.37 0.36 1.00
  F 0.14 0.05 0.11 0.26 0.34 0.23 0.32 1.00
  M 0.12 0.04 0.14 0.14 0.28 0.17 0.43 0.49 1.00
  CRFIN 0.21 0.11 0.24 0.13 0.22 0.14 0.16 0.26 0.25 1.00

Synthetic:
  G 1.00
  V 0.74 1.00
  N 0.75 0.57 1.00
  S 0.57 0.27 0.29 1.00
  P 0.50 0.33 0.43 0.59 1.00
  Q 0.55 0.52 0.56 0.33 0.64 1.00
  K 0.23 0.23 0.33 0.10 0.40 0.42 1.00
  F  − 0.07  − 0.11 0.01 0.15 0.22 0.08 0.28 1.00
  M 0.03  − 0.09 0.09 0.20 0.28 0.13 0.39 0.47 1.00
  CRFIN 0.08  − 0.01 0.12 0.17 0.22 0.04 0.11 0.20 0.23 1.00
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The assessment includes two broad categories that organ-
ize the lower-order dimensions: Leading the Organization 
and Leading Others. These broad categories largely and 
respectively correspond to the prevailing theoretical models 

of task- vs. relationship-focused perceptions of leadership 
behaviors (Gerpott et al., 2019; Meriac et al., 2014; Shaffer 
et al., 2016). Within the Leading the Organization category, 
there are four dimensions, while the Leading Others category 

Fig. 3   Correlations between 
GATB data: histogram of 
absolute differences between 
the original and synthetic data. 
Note: The complete correlation 
difference matrix, featuring 
differences across 100 cells, is 
provided in Table 3

Table 4   Machine learning 
analyses comparing original 
data and synthetic data for 
supervisory ratings predicted by 
GATB subtests

Note: n = 1056 for both the original dataset and the synthetic dataset. GATB, General Aptitude Test Battery; 
CRFIN, standard supervisory rating scale. We used fivefold cross-validation to obtain average values for 
R2, MSE, and MAE. R2, coefficient of determination; MSE, mean squared error; MAE, mean absolute error

XG Boost 
Regressor

Cat Boost 
Regressor

Random Forest LGBM Regressor

R2

  Train original data
  Test original data
  Synthetic data

0.17
0.10
0.06

0.18
0.09
0.07

0.17
0.09
0.06

0.20
0.08
0.07

MSE
  Train original data
  Test original data
  Synthetic data

127.91
137.19
144.02

124.99
139.04
142.42

126.77
138.84
144.24

122.12
139.60
142.64

MAE
  Train original data
  Test original data
  Synthetic data

8.87
9.17
9.55

8.79
9.27
9.49

8.84
9.26
9.54

8.67
9.32
9.47
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consists of seven dimensions (see Table 6).1 The 11 scales 
were measured using three to thirteen items rated on a 5-point 
scale ranging from 1 (“To a very little extent”) to 5 (“To a 
very great extent”). Raters also provide ratings of a leader’s 
likelihood to derail, which reflects challenges or issues that if, 
unaddressed, likely limit one’s effectiveness in a leadership 
position (Atwater et al., 1998).

Aside from the leader’s self-ratings, an average of 9.95 
raters (SD = 3.65) rated each leader. A total of 150,062 raters 
are reflected in the data, including 65,635 direct reports, 
67,507 peers, and 16,920 superiors. For each source, we cre-
ated aggregate scores for each type of rater and each dimen-
sion by averaging across all items within a given type of 
rater for each dimension. These aggregate scores served as 
input for our analyses.

Analyses

To generate synthetic multi-source leadership assessment 
data, we followed the process described earlier and depicted 

Table 5   GATB subtests 
and performance criterion 
standardized mean differences: 
comparing original and 
synthetic data by gender and 
race

Note: n = 1056 for both the original dataset and the synthetic dataset. GATB, General Aptitude Test Battery. 
See Table 1 for the names of the GATB measures. Standard deviations are in parentheses. Cohen’s d rep-
resents the difference between male and female effect sizes and the difference between the white and black 
effect sizes

Male Female Cohen’s d White Black Cohen’s d

G
  Original
  Syn-

thetic

110.99 (14.51)
111.21 (15.73)

107.99 (13.82)
108.61 (13.67)

0.21
0.18

111.57 (13.50)
111.74 (14.34)

97.15 (12.76)
98.30 (13.33)

1.10
0.97

V
  Original
  Syn-

thetic

108.19 (15.08)
108.14 (16.85)

109.95 (14.21)
111.31 (13.44)

 − 0.12
 − 0.21

110.51 (14.08)
110.75 (15.40)

99.52 (13.86)
102.41 (12.45)

0.78
0.60

N
  Original
  Syn-

thetic

111.48 (13.71)
110.34 (15.83)

107.70 (13.79)
107.14 (14.38)

0.27
0.21

111.17 (13.42)
109.75 (15.35)

100.54 (13.18)
102.31 (13.11)

0.80
0.52

S
  Original
  Syn-

thetic

106.82 (19.22)
108.11 (19.77)

105.38 (16.49)
107.23 (15.76)

0.08
0.05

107.69 (17.77)
109.36 (17.34)

95.18 (16.91)
95.84 (19.66)

0.72
0.73

P
  Original
  Syn-

thetic

117.59 (18.12)
119.49 (18.76)

122.87 (16.99)
123.39 (17.52)

 − 0.30
 − 0.22

121.32 (16.95)
123.17 (17.33)

109.65 (19.96)
107.25 (18.83)

0.63
0.88

Q
  Original
  Syn-

thetic

118.12 (15.63)
117.97 (17.50)

124.66 (16.05)
124.92 (15.04)

 − 0.41
 − 0.43

121.99 (15.83)
122.07 (16.64)

113.40 (16.13)
112.21 (15.72)

0.54
0.61

K
Original
Synthetic

112.43 (17.46)
111.30 (17.44)

116.84 (16.24)
118.06 (15.98)

 − 0.26
 − 0.40

115.12 (16.89)
114.86 (16.91)

108.03 (16.26)
108.03 (16.30)

0.43
0.41

F
Original
Synthetic

104.93 (19.39)
101.47 (16.73)

114.08 (18.41)
114.42 (17.97)

 − 0.48
 − 0.75

109.53 (19.20)
106.77 (18.06)

102.55 (20.27)
106.23 (19.59)

0.35
0.03

M
Original
Synthetic

119.40 (21.00)
115.43 (21.59)

118.13 (19.62)
115.04 (19.28)

0.06
0.02

119.90 (20.21)
115.90 (20.48)

110.45 (20.05)
109.93 (20.96)

0.47
0.29

CRFIN
Original
Synthetic

83.65 (12.46)
83.24 (12.22)

83.67 (12.29)
84.56 (12.61)

 − 0.00
 − 0.11

84.23 (12.24)
84.34 (11.96)

79.19 (12.07)
79.25 (12.84)

0.41
0.41

1  The assessment also contained dimensions categorized as “Lead-
ing Yourself.” However, for the sake of parsimony, and because these 
pertain to constructs beyond typical areas of emphasis within leader-
ship literature (e.g., career management, work-life balance), we have 
excluded these from our analyses.
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in Fig. 1. First, we examined the original data and found that, 
much like other rating-based evaluations in the organiza-
tional sciences, most variables were significantly skewed and 
leptokurtic (i.e., non-normal). Thus, most leaders were rated 
above the midpoint along each competency and below the 
midpoint for the derailment ratings. Second, we also deter-
mined that our intended use of these synthetic data would 
be to allow others to examine and replicate prior hypothesis 
testing (Braddy et al., 2014). Specifically, our goal was to 
synthesize data that reproduced earlier findings, which could 
then be shared with other researchers interested in self-
other agreement leadership research (Fleenor et al., 2010). 
These steps helped inform our decision to select a CTGAN 
synthetic data model and to tune several hyperparameters 
(i.e., epoch and batch size). Although this reflects an itera-
tive process, for the sake of parsimony, we only share the 
results of the best-performing model (i.e., batch size = 128; 
epoch = 3000).

Study 2 Results

Basic Tests

Overlapped Sample Test  As with study 1, we began by con-
ducting an overlapped sample test to ensure that the syn-
thetic data did not inadvertently create potential security or 
privacy risks. This test indicated that there was no overlap 

in data cases across the synthetic and original data. This 
provides more assurance of the security of the synthetic data.

Constrained Reflection Test  Next, we conducted a con-
strained reflection test, where we compared the mean and 
standard deviations for the original and synthetic data. 
Across the different competencies and measures of derail-
ment, and rating sources, the average absolute Cohen’s d 
value was 0.06 (SD = 0.04, min = 0.00, max = 0.19) (see 
Table 6). This suggests that, on average, the distributions 
of the variables in the synthetic data exhibited comparable 
measures of central tendency (i.e., mean) and variability 
(i.e., standard deviation) when compared to the original data.

Distribution Kurtosis and Skewness Test  Table 7 also reports 
the skewness and kurtosis values for each variable in the 
original and synthetic data. On average, the absolute dif-
ference in the skewness and kurtosis values was 0.22 and 
0.92. Further inspection revealed that the items pertaining 
to derailment tended to exhibit the largest differences across 
the synthetic and original data.

Variable Correlation Test  We then considered the variable 
correlation test and examined the differences in the correla-
tions obtained using the synthetic and original data. Across 
all items and rating sources, we compared 2016 correla-
tions (i.e., each cell in the complete matrix). On average, 
the absolute difference in the correlation estimates was 0.07 

Table 6   Summary of multisource leadership assessment

Note: Dimensions and sample items are drawn from the current multisource measure of leadership (Leslie et al., 2015)

Dimension Sample item

Leading the Organization
  Strategic Perspective “Links their responsibilities with the mission of the whole organization.”
  Being a Quick Study “Learns a new skill quickly.”
  Decisiveness “Is action-oriented.”
  Change Management “Adapts plans as necessary.”

Leading Others
  Leading Employees “Is willing to delegate important tasks, not just things they don't want to do.”
  Confronting Problem Employees “Can deal effectively with resistant employees.”
  Participative Management “Is open to the input of others.”
  Building Collaborative Relationships “Tries to understand what other people think before making judgments about them.”
  Compassion and Sensitivity “Is sensitive to signs of overwork in others.”
  Putting People at Ease “Has personal warmth.”
  Respect for Differences “Treats people of all backgrounds fairly.”

Likelihood of Derailing
  Problems With Interpersonal Relationships “Is dictatorial in their approach.”
  Difficulty Building and Leading a Team “Does not resolve conflict among direct reports.”
  Difficulty Changing or Adapting “Has not adapted to the culture of the organization.”
  Failure To Meet Business Objectives “Is overwhelmed by complex tasks.”
  Too Narrow a Functional Orientation “Could not handle management outside of current function.”
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(SD = 0.00, min = 0.00, max = 0.30). Figure 4 provides a 
histogram summarizing these differences, which shows that 
80% of the correlation estimates exhibited differences less 
than or equal to 0.10.

Taken as a whole, we found that the synthetic data exhib-
ited minimal differences in means and standard deviations 
(i.e., Cohen’s d) compared to the original data, that skewness 
and kurtosis were comparable for many variables, and that 
the majority of correlations were reproduced with relatively 
small differences. Thus, we proceeded to our use-specific 
tests.

Use‑Specific Tests

As noted previously, our intended purpose of these synthetic 
data was to generate data that would reproduce findings previ-
ously reported pertaining to the relationship between self-other 
agreement for task and relationship leadership and derailment 
(Braddy et al., 2014). Specifically, this model regressed peers’ 
ratings of derailment onto a leader’s self-ratings and their supe-
riors’ ratings of task and relationship leadership.

To begin, we sought to reduce the number of competen-
cies in the assessment to the two-dimensional space reported 
in the earlier study (i.e., task and relationship leadership).

Thus, we fit an exploratory factor analysis (EFA) that 
forced a two-factor solution onto the 11 leadership compe-
tencies for both self-ratings and superior’s ratings.2 Across 
the 22 factor loadings, we found that the average absolute 
difference between the original and synthetic data was 0.03 
(SD = 0.02, min = 0.00, max = 0.07). This suggests that fac-
tor analyses returned comparable solutions across the origi-
nal and synthetic data.

Next, we proceeded to identify more defensible measures 
of task and relationship leadership by identifying items that 
contributed to a clear factor structure and were not redun-
dant. Thus, we selected items whose relative loadings (i.e., 
item loading for a factor/sum of all loadings) were greater 
than 0.70 for a given. This resulted in two competencies for 
the task leadership dimension (i.e., decisiveness and con-
fronting problem employees) and two on the relationship 
leadership dimension (i.e., compassion and putting people at 
ease). We also calculated a mean derailment score by averag-
ing across peers’ ratings on the five derailment items.

Using these measures, we estimated polynomial regres-
sion models in both the original and synthetic data, which 
are direct replications of Braddy et al.’s (2014) models. 
Table 8 reports the model results for both data sets. In gen-
eral, the two datasets produced models that largely yielded 
similar results. Specifically, both models indicated that the 
more a leader and their supervisor rated their task or rela-
tionship leadership higher, the less likely the leader’s peers 
were to believe that the leader would derail. Ultimately, this 
yielded consistent estimates of the two primary response 
surface tests: the linear effects of the line of congruence 
(a1) and the linear effects of the line of incongruence (a3). 
Specifically, for both datasets, the more leaders and their 
superiors (dis)agreed about their level of task and relation-
ship leadership, the (more) less likely their peers were to 
indicate that the leader was likely to derail. These findings 
are largely similar to those reported by Braddy et al. (2014) 
and, more importantly to our current work, are consistent 
across both datasets. To allow for further comparisons of 
the polynomial regression results, we generated response 
surfaces for each model using the original and synthetic data 
(see Fig. 5). The surfaces generated when predicting leader 
derailment using task and relationship ratings are consistent 
when based on the original and synthetic data.

Study 2 Discussion

Our second application of synthetic data to an organizational 
context drew on multi-source leadership ratings. We believe 
this is a useful addition to study 1 because these data are 
largely non-normally distributed (i.e., skewed and leptokur-
tic), reflect a higher dimensional space (i.e., several vari-
ables being synthesized at once), and exhibit fairly strong 
correlations among the measures. Thus, in many ways, we 
see these data as a relatively stringent test of the capabili-
ties of synthetic data models and suspect that in many other 
situations (e.g., more normality, less measures, greater dis-
crimination), state-of-the-art synthetic data models would 
perform even better.

Overall, the synthetic data were able to reproduce pre-
viously estimated models using 360 data (Braddy et al., 
2014) and produce results that were quite similar to the 
original data. That said, there were some areas of impre-
cision. For example, the predictive relationship between 
self-ratings of task leadership is somewhat larger with the 
synthetic data than the original data (− 0.20 vs. − 0.04), 
and the non-linear effect of the line of incongruence (i.e., 
a4 response surface parameters) is non-significant only in 
the synthetic data for both task and relationship leader-
ship. We suspect that further training of a synthetic data 
model with additional hyperparameter tuning may reduce 
these differences. Here, though, it is important to highlight 
that these comparisons are not based on simulated data. 

2  The EFA was estimated using minimum residuals and varimax 
rotations (Revelle, 2024). We also inspected a scree plot for the EFA, 
which indicated that the elbow exhibited a marked flattening for two 
dimensions. Because each leader was evaluated by multiple raters 
(e.g., several peers), and we chose to average across multiple raters 
within a given category, systematic variance in ratings that can be 
attributable to types of raters are omitted from these models. Thus, 
these EFA results largely ignore this source of variability in the 360 
evaluations.
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Table 7   Descriptive statistics: 360 assessment data and synthetic data

Dimension Data Source Min Max Median Mean SD Kurtosis Skewness Cohen’s d

Problems with interpersonal relationships Original Superior 1.00 5.00 1.25 1.44 0.58 4.99 2.02
Synthetic Superior 1.00 5.00 1.25 1.47 0.63 5.09 2.14 0.13
Original Direct Report 1.00 5.00 1.31 1.46 0.50 4.89 1.92
Synthetic Direct Report 1.00 5.00 1.37 1.52 0.58 6.17 2.25 0.08
Original Peer 1.00 5.00 1.38 1.52 0.49 3.92 1.70
Synthetic Peer 1.00 5.00 1.36 1.47 0.45 3.24 1.56 0.07
Original Self 1.00 5.00 1.25 1.43 0.47 5.35 1.80
Synthetic Self 1.00 5.00 1.30 1.46 0.54 6.00 1.98 0.11

Difficulty building and leading a team Original Superior 1.00 5.00 1.43 1.59 0.58 2.11 1.22
Synthetic Superior 1.00 4.62 1.52 1.58 0.56 2.66 1.38 0.08
Original Direct Report 1.00 5.00 1.43 1.55 0.48 3.32 1.47
Synthetic Direct Report 1.00 4.36 1.45 1.54 0.50 3.55 1.68 0.04
Original Peer 1.00 5.00 1.56 1.64 0.48 2.51 1.20
Synthetic Peer 1.00 5.00 1.50 1.56 0.44 3.25 1.29 0.05
Original Self 1.00 5.00 1.57 1.58 0.49 2.07 0.96
Synthetic Self 1.00 3.65 1.57 1.57 0.48  − 0.16 0.58 0.06

Difficulty changing or adapting Original Superior 1.00 5.00 1.40 1.51 0.53 3.98 1.63
Synthetic Superior 1.00 4.79 1.39 1.48 0.48 3.05 1.44 0.09
Original Direct Report 1.00 5.00 1.35 1.45 0.42 5.63 1.88
Synthetic Direct Report 1.00 4.56 1.39 1.48 0.48 8.23 2.42 0.06
Original Peer 1.00 5.00 1.48 1.56 0.43 3.95 1.48
Synthetic Peer 1.00 4.05 1.52 1.62 0.47 2.38 1.42 0.04
Original Self 1.00 5.00 1.40 1.51 0.43 4.35 1.30
Synthetic Self 1.00 3.57 1.42 1.50 0.42 0.80 0.94 0.07

Failure to meet business objectives Original Superior 1.00 5.00 1.33 1.51 0.58 3.28 1.58
Synthetic Superior 1.00 3.82 1.34 1.49 0.48 0.46 0.99 0.10
Original Direct Report 1.00 5.00 1.38 1.50 0.47 4.73 1.80
Synthetic Direct Report 1.00 5.00 1.39 1.57 0.61 7.19 2.43 0.05
Original Peer 1.00 5.00 1.50 1.60 0.47 3.06 1.39
Synthetic Peer 1.00 4.31 1.48 1.57 0.49 2.78 1.44 0.12
Original Self 1.00 5.00 1.50 1.59 0.49 2.05 1.02
Synthetic Self 1.00 3.72 1.50 1.59 0.50 0.23 0.81 0.11

Too narrow a functional orientation Original Superior 1.00 5.00 1.70 1.82 0.74 0.72 0.98
Synthetic Superior 1.00 5.00 1.81 1.84 0.71 0.39 0.81 0.07
Original Direct Report 1.00 5.00 1.47 1.59 0.51 3.42 1.54
Synthetic Direct Report 1.00 5.00 1.48 1.58 0.56 6.89 2.22 0.01
Original Peer 1.00 5.00 1.73 1.83 0.58 1.21 0.97
Synthetic Peer 1.00 4.95 1.77 1.87 0.65 0.58 0.88 0.02
Original Self 1.00 5.00 1.60 1.72 0.58 0.92 0.84
Synthetic Self 1.00 4.04 1.78 1.73 0.56  − 0.31 0.53 0.17

Strategic perspective Original Superior 1.13 5.00 4.13 4.09 0.54 0.60  − 0.53
Synthetic Superior 1.13 5.00 4.09 4.05 0.56 2.12  − 1.01 0.03
Original Direct Report 1.54 5.00 4.36 4.30 0.41 2.22  − 1.06
Synthetic Direct Report 1.54 5.00 4.37 4.35 0.41 2.94  − 1.14 0.07
Original Peer 1.33 5.00 4.20 4.16 0.41 1.53  − 0.75
Synthetic Peer 1.33 5.00 4.20 4.12 0.51 2.37  − 1.19 0.07
Original Self 1.50 5.00 4.00 4.04 0.44 0.07  − 0.12
Synthetic Self 2.25 5.00 4.01 4.07 0.45  − 0.43 0.10 0.12

Being a quick study Original Superior 1.00 5.00 4.33 4.23 0.59 0.52  − 0.61
Synthetic Superior 2.54 5.00 4.24 4.25 0.55  − 0.40  − 0.40 0.03
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Table 7   (continued)

Dimension Data Source Min Max Median Mean SD Kurtosis Skewness Cohen’s d

Original Direct Report 1.33 5.00 4.33 4.30 0.47 2.29  − 1.08
Synthetic Direct Report 1.33 5.00 4.33 4.32 0.51 5.08  − 1.65 0.04
Original Peer 1.00 5.00 4.25 4.21 0.45 1.72  − 0.82
Synthetic Peer 1.78 5.00 4.24 4.23 0.45 1.52  − 0.81 0.13
Original Self 1.33 5.00 4.00 3.95 0.60  − 0.31  − 0.14
Synthetic Self 2.02 5.00 4.00 3.95 0.60  − 0.25  − 0.15 0.05

Decisiveness Original Superior 1.00 5.00 4.00 4.07 0.63 0.61  − 0.62
Synthetic Superior 1.51 5.00 4.03 4.08 0.60 0.56  − 0.57 0.00
Original Direct Report 1.22 5.00 4.33 4.24 0.47 1.88  − 0.98
Synthetic Direct Report 1.22 5.00 4.26 4.24 0.47 4.05  − 1.35 0.02
Original Peer 1.33 5.00 4.17 4.11 0.47 1.11  − 0.69
Synthetic Peer 1.33 5.00 4.16 4.10 0.51 1.33  − 0.81 0.01
Original Self 1.00 5.00 4.00 3.90 0.61 0.05  − 0.27
Synthetic Self 1.98 5.00 4.00 3.89 0.61  − 0.02  − 0.39 0.06

Change management Original Superior 1.00 5.00 4.00 4.00 0.53 0.57  − 0.33
Synthetic Superior 1.42 5.00 4.00 4.04 0.47 1.06  − 0.21 0.04
Original Direct Report 1.44 5.00 4.20 4.17 0.45 1.48  − 0.81
Synthetic Direct Report 1.44 5.00 4.18 4.13 0.49 3.61  − 1.42 0.07
Original Peer 1.00 5.00 4.07 4.05 0.43 1.27  − 0.57
Synthetic Peer 1.79 5.00 4.04 3.98 0.53 1.26  − 0.81 0.12
Original Self 1.78 5.00 3.89 3.92 0.45 0.05 0.09
Synthetic Self 2.51 5.00 3.98 3.94 0.48  − 0.17 0.10 0.09

Leading employees Original Superior 1.00 5.00 4.00 3.98 0.53 0.45  − 0.35
Synthetic Superior 1.51 5.00 4.00 4.01 0.55 0.66  − 0.38 0.06
Original Direct Report 1.09 5.00 4.18 4.13 0.48 1.44  − 0.86
Synthetic Direct Report 1.09 5.00 4.17 4.17 0.51 1.82  − 0.94 0.04
Original Peer 1.25 5.00 4.05 4.02 0.45 1.16  − 0.60
Synthetic Peer 1.25 5.00 3.98 3.93 0.53 4.11  − 1.35 0.05
Original Self 1.69 5.00 3.85 3.89 0.45  − 0.03 0.02
Synthetic Self 2.18 5.00 3.85 3.86 0.48  − 0.20 0.03 0.03

Confronting problem employees Original Superior 1.00 5.00 3.83 3.74 0.65 0.26  − 0.39
Synthetic Superior 1.21 5.00 3.75 3.75 0.59 0.54  − 0.33 0.00
Original Direct Report 1.00 5.00 4.00 3.96 0.56 0.93  − 0.71
Synthetic Direct Report 1.00 5.00 4.00 4.01 0.57 1.61  − 0.92 0.02
Original Peer 1.00 5.00 3.89 3.84 0.56 0.90  − 0.61
Synthetic Peer 1.00 5.00 3.86 3.86 0.61 1.03  − 0.71 0.00
Original Self 1.25 5.00 3.50 3.57 0.58 0.11  − 0.13
Synthetic Self 1.25 5.00 3.58 3.56 0.59 0.21  − 0.25 0.01

Participative management Original Superior 1.00 5.00 4.00 4.08 0.55 0.59  − 0.45
Synthetic Superior 1.40 5.00 4.06 4.05 0.54 1.40  − 0.78 0.02
Original Direct Report 1.56 5.00 4.22 4.17 0.48 1.57  − 0.92
Synthetic Direct Report 1.56 5.00 4.25 4.21 0.52 2.44  − 1.17 0.07
Original Peer 1.00 5.00 4.11 4.07 0.46 1.43  − 0.75
Synthetic Peer 1.17 5.00 4.12 4.04 0.56 1.88  − 1.04 0.08
Original Self 1.89 5.00 4.00 4.01 0.46  − 0.06  − 0.05
Synthetic Self 2.14 5.00 4.00 3.99 0.46  − 0.09  − 0.11 0.14

Building collaborative relationships Original Superior 1.00 5.00 4.00 4.03 0.59 0.70  − 0.59
Synthetic Superior 1.14 5.00 4.02 4.03 0.58 1.01  − 0.64 0.03
Original Direct Report 1.43 5.00 4.24 4.17 0.49 1.82  − 1.00
Synthetic Direct Report 1.43 5.00 4.19 4.13 0.56 3.03  − 1.38 0.05
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That is, we generated the data synthetically and then began 
conducting analyses and fitting potential models. Thus, 
the data are not geared towards a single analysis (e.g., 
exploratory factor analysis, polynomial regression model), 
but instead are intended to preserve many of the features 
of the original data.

Lastly, it is important to reemphasize that developing a 
suitable synthetic data generation model is usually an itera-
tive process. Specifically, as indicated in Fig. 1, we exam-
ined several alternative synthetic data generation models 
(e.g., Copula GAN) and employed a range of hyperpa-
rameters (e.g., batch sizes that included 128, 256, and 500 
and epochs including 500, 1000, 2000, and 3000).3 For the 
sake of parsimony, though, we only share the results of the 

best-performing model (i.e., batch size = 128; epoch = 3000). 
However, it is critical to highlight that researchers who gen-
erate synthetic data will likely need to consider several data 
generation models and employ a range of hyperparameters 
until they are satisfied with the results of the various qual-
ity tests.

General Discussion

In this research, we propose a systematic framework to 
guide the generation and evaluation of synthetic data with 
the hopes of facilitating the application of synthetic data in 
organizational research. Using this framework, we present 
two empirical demonstrations in studies 1 and 2 to illustrate 
how synthetic data can serve as a potential solution when 
providing the original data is impractical, restricted, or poses 
privacy concerns. Our goal is to provide organizational 

Table 7   (continued)

Dimension Data Source Min Max Median Mean SD Kurtosis Skewness Cohen’s d

Original Peer 1.00 5.00 4.10 4.05 0.49 1.43  − 0.84
Synthetic Peer 1.00 5.00 4.15 4.11 0.54 1.63  − 0.87 0.09
Original Self 1.29 5.00 4.00 3.94 0.45 0.11  − 0.03
Synthetic Self 2.72 5.00 4.00 3.96 0.47  − 0.33 0.09 0.19

Compassion and sensitivity Original Superior 1.00 5.00 4.17 4.20 0.50 0.36  − 0.44
Synthetic Superior 2.03 5.00 4.20 4.19 0.49 0.39  − 0.53 0.06
Original Direct Report 1.60 5.00 4.31 4.25 0.45 1.52  − 0.92
Synthetic Direct Report 1.60 5.00 4.31 4.29 0.46 2.23  − 1.08 0.02
Original Peer 1.00 5.00 4.18 4.16 0.44 1.70  − 0.75
Synthetic Peer 1.00 5.00 4.14 4.08 0.48 2.57  − 1.09 0.08
Original Self 1.33 5.00 4.00 4.05 0.49 0.10  − 0.30
Synthetic Self 2.56 5.00 4.01 4.10 0.50  − 0.88 0.10 0.03

Putting people at ease Original Superior 1.00 5.00 4.33 4.34 0.60 0.57  − 0.83
Synthetic Superior 2.37 5.00 4.34 4.36 0.55  − 0.03  − 0.62 0.02
Original Direct Report 1.00 5.00 4.44 4.36 0.50 1.79  − 1.16
Synthetic Direct Report 1.72 5.00 4.48 4.39 0.51 2.43  − 1.36 0.05
Original Peer 1.00 5.00 4.39 4.32 0.49 1.57  − 0.99
Synthetic Peer 1.40 5.00 4.43 4.36 0.50 0.87  − 0.90 0.08
Original Self 1.00 5.00 4.00 4.05 0.61  − 0.26  − 0.30
Synthetic Self 1.87 5.00 4.01 4.10 0.64  − 0.23  − 0.44 0.06

Respect for differences Original Superior 1.00 5.00 4.50 4.49 0.51 1.09  − 0.93
Synthetic Superior 2.74 5.00 4.51 4.52 0.46 0.41  − 0.89 0.05
Original Direct Report 1.25 5.00 4.58 4.52 0.39 3.95  − 1.43
Synthetic Direct Report 1.62 5.00 4.64 4.56 0.38 5.50  − 1.70 0.01
Original Peer 1.00 5.00 4.50 4.45 0.39 2.91  − 1.06
Synthetic Peer 2.17 5.00 4.49 4.41 0.41 1.66  − 1.02 0.09
Original Self 2.00 5.00 4.50 4.44 0.50  − 0.18  − 0.63
Synthetic Self 3.04 5.00 4.74 4.50 0.49  − 0.75  − 0.60 0.12

Note: n = 16,752 for the original dataset and 15,000 for the synthetic dataset. Cohen’s d represents the difference between the original data and 
synthetic data effect sizes

3  Complete results of the quality tests for these alternative synthetic 
data models are available on GitHub: https://​github.​com/​wpeng​da/​
Synth​eticD​ata_​Organ​izati​onalS​cience.

https://github.com/wpengda/SyntheticData_OrganizationalScience
https://github.com/wpengda/SyntheticData_OrganizationalScience
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researchers and practitioners with a general understanding 
of the principles behind generating synthetic data, inspiring 
them to further explore synthetic data methodologies and 
their use in organizational research.

Potential Limitations and Ethical Considerations

The use of synthetic data offers a realm of fresh prospects 
for exploration and advancement. However, like every new 
advancement, it comes with particular challenges. We want 
to emphasize that the use of synthetic data is best-suited 
as an alternative when sharing original data is impracti-
cal, restricted, or poses privacy concerns. Synthetic data 
are inherently a variation of the original data. Therefore, 
subsequent models or analyses performed using synthetic 
data can approach, and often very closely approximate, the 
original data, there will still be variations and perturbations. 
We believe that the recommended framework and the qual-
ity-checking methods proposed we have proposed can help 
users of synthetic data effectively assess the quality of the 
generated data and ensure it meets their intended purposes. 
Along with leveraging our proposed framework, we would 

also recommend that researchers, whenever possible, make 
their original data available.

If sharing the original data is not possible, and research-
ers intend to synthesize data, it is important to note that 
generating these data is not a standardized or “plug-and-
play” process but rather one that requires careful attention, 
involves multiple decision points, and should be transpar-
ently documented and described to the eventual end-user. 
Again, we would like to emphasize the importance of the 
“Use-Specific Tests” in our proposed process, which should 
be closely tailored to the intended use of synthetic data. For 
example, study 1 featured measures of cognitive ability 
(i.e., GATB), so ensuring comparable subgroup differences 
was a critical use-specific test. In contrast, study 2 featured 
multisource ratings of leadership, making the similarity in 
response surface analyses more relevant.

We also believe that synthetic data, although allowing 
for greater data sharing and science-practice partnerships, 
requires further consideration and collective experience 
among organizational scientists about how synthetic data 
should be generated and what arrangements might work 
best. For example, establishing mechanisms by which an 

Fig. 4   Correlations between 
leadership assessments: 
histogram of absolute differ-
ences between the original 
and synthetic data. Note: The 
complete correlation difference 
matrix, featuring differences 
across 2080 cells, is provided in 
our GitHub repository
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organization could verify synthetic data findings with the 
original data that it possesses. Also, transparent reporting 
of the synthetic data generation process, as discussed in this 
paper, is critical. For example, researchers should clearly 
state from the outset that they are using synthetic data. They 
should describe how the synthetic data were generated, 
including details of the data generation models and hyper-
parameters used, and disclose challenges encountered during 
the synthesis process (see Appendix for more information 
about hyperparameters).

In addition, the quality of synthetic data is highly depend-
ent on the quality of the original data used to generate it. If 
the original data contains errors, the synthetic counterpart 
will also reflect those flaws. For example, if the nature of the 
variables is misspecified in the original data, then this will 
be recreated in the synthetic data. Likewise, if the original 
data sample size is a relatively small sample, then the useful-
ness of synthetic data may become limited. Importantly, this 
consideration applies to the intended level of analysis and 
theory (e.g., individuals, teams, leaders, or organizations) 
rather than the level at which the data were collected.

Furthermore, generating high-quality synthetic depends 
on the quality of the generative model used. If the model 
does not properly capture the key characteristics of the 
original data, the generated data may not provide accurate 
insights. In our framework, we refrained from advancing 
uniform standards for evaluating synthetic data. This was an 
intentional decision because we believe that doing so would 
be more harmful than beneficial. Such thresholds could 
impose unnecessary restrictions on the practical applica-
tion of synthetic data, potentially misleading researchers to 
prioritize a single “compliance” goal rather than carefully 
considering the applicability and efficaciousness of the data 
in their specific contexts (Kreamer et al., 2023). Overly strict 
thresholds may also encourage a narrow approach, limiting 
flexibility and creativity, and preventing researchers from 
fully leveraging the potential of synthetic data in complex, 
dynamic real-world applications. We advocate for a con-
text-specific evaluation framework, allowing researchers to 
adjust their evaluation methods based on different applica-
tion scenarios, while also emphasizing the importance of 
transparency in documenting these details. In fact, for some 

Table 8   Self-other agreement 
polynomial regression models 
for original and synthetic data

Note: n = 16,752 for the original dataset and 15,000 for the synthetic dataset. R2 for ratings of derailment 
based on the polynomial regression models was 0.12 when using the original data and 0.10 for the syn-
thetic data

Perceptions of task leadership

Original data Synthetic data
Variable b SE p b SE p
Self-ratings  − 0.04 0.06 0.55  − 0.20 0.07  < 0.01
Supervisor ratings  − 0.36 0.06  < 0.01  − 0.64 0.06  < 0.01
Self-ratings2 0.00 0.01 0.94 0.00 0.01 0.68
Self-ratings * supervisor ratings 0.03 0.01 0.02 0.07 0.01  < 0.01
Supervisor ratings2 0.02 0.01 0.01 0.03 0.01  < 0.01
Response surface tests
  a1  − 0.40 0.09  < 0.01  − 0.85 0.10  < 0.01
  a2 0.05 0.01  < 0.01 0.10 0.01  < 0.01
  a3 0.32 0.08  < 0.01 0.44 0.09  < 0.01
  a4  − 0.01 0.02 0.66  − 0.04 0.02 0.04

Perceptions of relationship leadership
Original data Synthetic data

Variable B SE p b SE p
Self-ratings  − 0.07 0.09 0.44  − 0.06 0.10 0.53
Supervisor ratings  − 0.67 0.09  < 0.01  − 1.03 0.10  < 0.01
Self-ratings2  − 0.03 0.01 0.02  − 0.05 0.01  < 0.01
Self-ratings * supervisor ratings 0.04 0.02  < 0.01 0.09 0.02  < 0.01
Supervisor ratings2 0.04 0.01  < 0.01 0.06 0.01  < 0.01
Response surface tests
  a1  − 0.74 0.14  < 0.01  − 1.09 0.15  < 0.01
  a2 0.05 0.02  < 0.01 0.09 0.02  < 0.01
  a3 0.60 0.12  < 0.01 0.97 0.13  < 0.01
  a4  − 0.03 0.03 0.18  − 0.08 0.03  < 0.01
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specific applications or complex data structures, further 
research and development may be required to generate syn-
thetic data effectively. Thus, it might behoove scholars inter-
ested in synthesizing data to recognize that this approach 
requires some technical and algorithmic knowledge. Ideally, 
the materials we have shared in our online repository can 
help those interested begin to increase their knowledge of 
this approach.

Data Sharing Recommendations

As mentioned above, synthetic data provides a promising 
solution for improving the openness of our research. Never-
theless, synthetic data will not perfectly replicate the original 
data, as it is inherently a variant of these data. Therefore, 

problems that can be solved by providing partial informa-
tion from the original data while maintaining privacy may 
be preferable to using synthetic data. For example, provid-
ing aggregated statistical results from the original data—
which may be less likely to compromise privacy—could be a 
potential solution. If this is not feasible, synthetic data seems 
like a useful alternative.

Additionally, we encourage researchers to ensure that 
they abide by prevailing ethical norms, specific rules, and 
organizational regulations regarding data sharing. When in 
doubt regarding data sharing, the authors should contact 
stakeholders who can provide oversight and guidance on 
such practices. For instance, Institutional Review Boards 
may recommend an explicit statement within the informed 
consent forms for human subjects indicating that synthetic 

Fig. 5   Response surfaces for polynomial regression models based on 
original and synthetic data. Note: Responses surfaces are based on the 
results of the polynomial regression models reported in Table 8. Sur-
faces on the left-hand side correspond to those based on models using 

the original data, while the surfaces on the right-hand side are based 
on models using the synthetic data. n = 16,752 for the original dataset 
and 15,000 for the synthetic data
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data may be generated in lieu of the original data (e.g., “For 
future research studies, we may use the data you provide to 
generate de-identified synthetic data. These non-identifia-
ble, synthetic data may be shared with other researchers for 
future research studies without requiring additional consent 
from you.”). Other entities, such as legal departments, data 
governance committees, or database owners, may have addi-
tional recommendations and guidance that pertain to the use 
of synthetic data.

Future Research

We believe that synthetic data offers organizational scholars 
an opportunity to use previously inaccessible data. Given its 
novelty, future organizational research exploring the applica-
tion of synthetic data would be beneficial.

For example, future research may consider the processes 
for, and benefits of, generating multiple synthetic datasets from 
a single original dataset. Across these different datasets, one 
could emphasize different criteria that might be relevant for 
various evaluations. Due to the inherent randomness of ML 
methods, each synthetic dataset generated from an original 
dataset is bound to be different. By comprehensive analysis of 
the set of synthetic datasets, future research could shed further 
light on the nature of the original dataset and the robustness of 
the synthetic dataset generation.

Aside from this, the main focus of this paper is the discus-
sion and examination of numeric data. However, data types 
are not limited to numeric data; other types, such as textual 
data, also exist. Such text-based data often emerge via quali-
tative methodologies (e.g., interviews or focus group tran-
scripts). Rapidly advancing large language models (LLMs) 
may be a good choice for generating synthetic data in the 
form of textual data (e.g., Li et al. 2023; Tang et al. 2023). 
Furthermore, recent studies have shown that LLMs exhibit 
remarkable abilities to produce human-like responses across 
various psychological tasks (e.g., Caron and Srivastava, 2022; 
Huang et al. 2023; Jiang et al. 2023; Lampinen et al. 2024; 
Pellert et al. 2024; Wang et al. 2024a). Based on this founda-
tion, agent-based simulations to generate synthetic data are 
also worth exploring (e.g., Chan et al. 2024; Chen et al. 2024; 
Wang et al., 2024b).

Moreover, we think encouraging cross-disciplinary col-
laborations—such as facilitating exchanges between com-
puter scientists, statisticians, and organizational scientists—
can introduce unprecedented methods and ideas. Through 
closer cooperation among multiple disciplines, we can fully 
explore and utilize the vast potential of synthetic data.

Conclusion

The open science movement has sought to promote the shar-
ing of data as such a practice can serve to accelerate the 
advancement of theory, practice, and policy making. How-
ever, concerns remain about the need to protect human sub-
jects and proprietary information. The creation of synthetic 
data is one means to promote open data while mitigating 
potential ethical and legal concerns. In the current paper, 
we reviewed the key steps in an iterative process needed to 
generate synthetic data. These include the consideration of a 
number of assumptions as well as basic and specific-use tests 
in order to evaluate the quality of synthetic data. We then 
demonstrated the use of these steps on two unique exam-
ple datasets. We hope that the synthetic data approach, as 
illustrated here across two studies, serves to promote greater 
sharing of data in the organizational sciences.

Appendix

Parameters and Hyperparameters

Before we begin, it is important to define some terms com-
monly used in the field of ML, similar to how various terms 
are defined in psychology. ML is gaining increasing atten-
tion in the field of personnel selection (Koenig et al., 2023), 
but people may still not be familiar with the related termi-
nology. We will introduce the concepts of parameters and 
hyperparameters in the sections below.

Parameters are elements that can be initialized and 
updated through the learning process, such as the weights of 
neurons in a neural network. In contrast, hyperparameters, 
which cannot be directly estimated from data, must be set 
before training the ML model. They also define the model’s 
architecture (Kuhn & Johnson, 2013). The process of design-
ing an ideal model architecture with the best configuration of 
hyperparameters is known as hyperparameter optimization/
tuning. This tuning is considered an important component in 
building effective ML models (Hutter et al., 2019).

Common Hyperparameters

Common hyperparameters include as follows (Hutter et al., 
2019; Yang & Shami, 2020):

1.	 Learning rates: These rates determine the speed at 
which network parameters are updated during training, 
directly impacting learning efficiency.

2.	 Number of epochs: This defines how many times the 
complete dataset is used to train the model, which can 
affect both training duration and model accuracy.
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3.	 Batch size: This hyperparameter sets the amount of data 
fed into the model during each training iteration, affect-
ing both the speed and stability of the training process.

4.	 Optimization algorithms: Optimization algorithm 
refers to a method employed in ML to adjust the param-
eters of a model. The goal is to either minimize or maxi-
mize a specific function, often the loss function. Options 
such as Adam or SGD can significantly influence the 
effectiveness and speed of training.

5.	 Network architecture: Elements like the number of 
hidden layers and neurons per layer play important roles 
in determining the model’s learning capability and com-
plexity.

6.	 Noise dimension: The dimension of the input noise vec-
tor for the Generator influences the diversity of the data 
generated.

Loss Function and Optimize Hyperparameters

In addition, we would like to briefly introduce how to opti-
mize hyperparameters. Optimizing hyperparameters is usu-
ally aimed at minimizing the loss function. The loss function 
is a measure of the difference between the model’s output 
and the true labels; for synthetic data, it measures how 
close the output is to the original data. By minimizing this 
function, the synthetic data generated by the model can be 
improved. Generally speaking, different goals and models 
will choose different loss functions. Common loss functions 
include the MSE and the MAE. GAN-based models include 
the generator and the discriminator, each with its own loss 
function. The following are common methods for optimizing 
hyperparameters (Yang & Shami, 2020).

1.	 Model-free algorithms optimization: These refer to 
optimization methods that do not rely on a clear math-
ematical description of the underlying model. For 
example, Manual Search is a very basic method where 
hyperparameters are manually adjusted by individuals 
based on their experience and intuition, also known as 
“trial and error” or babysitting (Abreu, 2019). Another 
example is Grid Search, which is essentially a method of 
exhaustive search. For each hyperparameter, users select 
a small finite set to explore (Goodfellow et al., 2016). 
The Cartesian product of these hyperparameters results 
in several combinations, and Grid Search trains mod-
els using each combination to select the one with the 
smallest loss function value as the best hyperparameter 
(Hutter et al., 2019).

2.	 Gradient-based optimization: This is a traditional 
optimization technique that computes the gradient of 
variables to identify promising directions and move 
towards the optimal solution (Bengio, 2000). By ran-
domly selecting a data point or a small subset of data, 

this technique updates the model parameters by moving 
in the opposite direction of the gradient computed for 
that sample or subset, thus taking a step towards mini-
mizing the loss function. Therefore, after convergence, 
it can achieve a local optimum. For certain ML algo-
rithms, the gradient of some hyperparameters can be 
computed, and then gradient descent is used to optimize 
these hyperparameters. However, it can only be used to 
optimize continuous hyperparameters, as other types of 
hyperparameters (e.g., the depth of the decision tree; the 
number of layers in the network structure; and the choice 
of activation function) do not have a gradient direction. 
Moreover, this is only effective for convex functions, as 
non-convex functions might only reach a local rather 
than a global optimum.

3.	 Bayesian optimization: This method uses a probabil-
istic approach to predict the performance of various 
hyperparameters and updates the model as more results 
are observed (Snoek et al., 2012). The key idea is to 
balance exploration—testing hyperparameters where 
the model’s predictions are uncertain—and exploita-
tion—focusing on hyperparameters that are predicted 
to yield the best performance. In Bayesian optimization, 
a surrogate model, often a Gaussian process, is used to 
model the unknown function linking hyperparameters to 
an objective function, such as model accuracy. Gauss-
ian processes are favored for their ability to provide a 
smooth estimate and naturally incorporate prediction 
uncertainty. An acquisition function, such as expected 
improvement, probability of improvement, or upper 
confidence bound, is then used to select the next set of 
hyperparameters to be evaluated, optimizing the use of 
the surrogate model (Frazier, 2018). Compared to meth-
ods like grid search, Bayesian optimization can identify 
more effective hyperparameters with significantly fewer 
evaluations (Injadat et al., 2018).

Other Considerations

Considering that our goal is to learn and imitate the original 
data as precisely as possible—rather than capturing the under-
lying parameters of the overall population represented by the 
original data—an increase in model complexity and training 
duration might be beneficial. This approach allows us to cap-
ture and learn complex patterns and details within the data, 
thereby producing synthetic data that more closely resembles 
the original data.

However, it is essential to ensure that no specific sam-
ples from the original data, nor identifiable characteristics of 
particular individuals, are leaked. For example, a company 
has generated a synthetic dataset of employee information 
to research employee turnover prediction. The entries in this 
synthetic dataset include details such as years of service, 
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department, age, and salary range. Although the data are “syn-
thetic” and do not exactly match actual data, some entries may 
closely resemble the characteristics of actual employees. For 
instance, if the synthetic dataset includes an entry showing an 
employee with 60 years of service, age 80, working in the IT 
department, and within a specific salary range, and if the actual 
dataset contains only one employee matching these conditions 
(the outlier), it could lead to speculation that this synthetic data 
entry was based on that particular employee’s data.

To prevent generating samples that are identical or overly 
similar to the original data, we need to adequately randomize 
or obfuscate unique patterns within the original data. Addition-
ally, methods such as data deduplication (e.g., Xia et al. 2016) 
should be used to reject any duplicate or excessively similar 
data.
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