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Abstract

We examine the language capabilities of lan-
guage models (LMs) from the critical perspec-
tive of human language acquisition. Build-
ing on classical language development theories,
we propose a three-stage framework to assess
the abilities of LMs, ranging from preliminary
word understanding to complex grammar and
complex logical reasoning.1 Using this frame-
work, we evaluate the generative capacities of
LMs using methods from linguistic research.
Results indicate that although recent LMs out-
perform earlier models in overall performance,
their developmental trajectory does not strictly
follow the path of human language acquisition.
Notably, in generation tasks, LMs are more
similar to human performance in areas where
information is easier to extract from the corpus,
such as average word length, clauses, and aux-
iliary verbs. Newer LMs did not exhibit signifi-
cant progress in terms of specific dimensions,
such as clauses and auxiliary verbs, where the
variation across corpora is relatively limited.
Register theory offers a plausible explanation
for these observations, suggesting that the lin-
guistic features of the training data have a sub-
stantial impact on the models’ abilities.

1 Introduction

Since the advent of early natural language pro-
cessing (NLP) systems such as ELIZA (Weizen-
baum, 1966) and SHRDLU (Winograd, 1971) in
the 1950s, researchers have been striving to develop
computer programs to understand human language.
With continuous technological advancements, we
have witnessed the rise of language models (LMs),
which have achieved unprecedented success in lan-
guage understanding and language generation (e.g.,
Gemini, Anil et al., 2023; GPT-4, Achiam et al.,

1Code and dataset are available at https://github.com/
ericyang1029/Language-Acquisition

*Equal contribution

Figure 1: Three-Stage Anatomy of Language Acquisi-
tion.

2023; Llama 3, Dubey et al., 2024). These mod-
els not only handle complex contexts and generate
coherent, human-like text; they also exhibit emer-
gent reasoning abilities and a plausible degree of
creativity.

As the capabilities of LMs continue to grow, so
does the need for comprehensive evaluations of
their performance. To date, this need has produced
a series of benchmark studies that evaluate the ca-
pabilities of LMs across various language tasks,
such as text classification (Sun et al., 2023), natu-
ral language inference (NLI) (Ravichander et al.,
2019), and question answering (Kwiatkowski et al.,
2019), with the goal of comparing different models,
identifying their limitations in terms of these tasks,
and providing guidance for future model develop-
ment. However, most existing benchmarks, such
as GLUE (Wang et al., 2019), SuperGLUE (Wang
et al., 2020) and MMLU (Hendrycks et al., 2021),
while thoroughly evaluating models on specific lan-
guage tasks, overlook the focus of our current pa-
per: i.e., understanding model capabilities in terms
of the developmental stages of human language ac-
quisition (Goldberg, 2005). Similar to how humans
acquire language through extensive exposure to
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spoken or written words as they develop, LMs are
similarly trained on large collections of text. Both
humans and LMs build their language skills by re-
peatedly encountering language, gradually forming
and refining stable patterns and associations. In-
sights from previous studies on the stages of human
language development could offer valuable refer-
ence points for understanding this process in terms
of LMs.

As one of the unique abilities of humans, the
acquisition of language has long been a key area
of research in psycholinguistics. During the pro-
cess of language acquisition, humans go through
multiple stages, from imitation and rule learning
to complex contextual understanding (Goldberg,
2005). These stages bear some resemblance to the
way current LMs are trained. For instance, LMs
learn the statistical patterns and grammatical rules
of language through training on large-scale data,
similar to how infants develop language abilities
by receiving a vast amount of input through lis-
tening and speaking. If we design theory-driven
tests based on the human language acquisition pro-
cess to evaluate the capabilities of LMs, it could
help us better understand the nature, potential, and
limitations of LMs in their development.

Our work draws on classical theories of human
language development to assess LMs in terms of
a three-stage human language development frame-
work (Chomsky, 2014; Loban, 1976; Pinker, 2003),
as shown in Figure 1. The first stage involves de-
veloping basic language understanding, similar to
early language acquisition in infants. At this stage,
we evaluate the model’s ability to recognize vocab-
ulary, grasp syntax, and perform simple reasoning.
In the second stage, the focus shifts to mastering
complex grammar and semantics, where the model
demonstrates a deeper understanding of language
rules and logical relationships between sentences.
The third stage assesses advanced language abili-
ties, evaluating the model’s capacity for complex
reasoning and logical analysis.

We further investigate another theory: regis-
ter theory in linguistics, which posits that differ-
ent language use scenarios influence the form and
structure of language (Halliday, 1977; Matthiessen,
1993). This theory offers insights into the extent
to which models’ abilities depend on the linguistic
features encountered in specific situations, referred
to as registers. In LMs, the training corpus will re-
flect some registers but not others, which can raise
general questions or concerns about the generaliz-

ability and biases contained in any given corpus.
We evaluated 15 LMs from 2019 to 2024, ex-

cluding instruction fine-tuned or chat versions, with
varying parameter sizes (see §4.1). Our findings
include: (1) newer LMs generally outperform older
ones, though performance varies by task; (2) LMs
do not follow human language acquisition pat-
terns but rather reflect changes in architecture and
training data; (3) for easily accessible information
such as average word length, clauses, and auxiliary
verbs, LMs show little improvement over time. Re-
cent models have demonstrated minimal progress
in these areas due to limited variation across cor-
pora. Overall, register theory, which focuses on
data, better explains model differences than human
developmental processes.

2 Related Works

LMs are computational systems designed to under-
stand and generate text in human language. Over
time, advancements in LMs, particularly in pre-
trained models like GPT (Radford et al., 2019)
and BERT (Devlin et al., 2019), have significantly
improved performance across various NLP tasks.
Large LMs, which leverage vast amounts of data
and computational power, can capture more intri-
cate nuances in language (Bommasani et al., 2022;
Wei et al., 2022a), improving its generative capa-
bilities involving masked token or next-token pre-
dictions.

These models are typically fine-tuned for spe-
cific tasks after pre-training, further enhancing their
adaptability and versatility in practical applications
(Gururangan et al., 2020). As noted previously,
systematically evaluating the performance of LMs
is critical as they grow in their complexity and di-
versity (Srivastava et al., 2023). Benchmarking not
only provides a standardized way to compare differ-
ent models; it also highlights areas where improve-
ments are needed, guiding future advancements in
the field.

There are many benchmarks that evaluate LMs’
abilities. Some focus on specific aspects, whereas
others cover a broad range of tasks. For instance,
the SST2 dataset (Socher et al., 2013) measures text
classification and the TriviaQA dataset (Joshi et al.,
2017) focuses on question answering. Addition-
ally, comprehensive benchmark suites like GLUE
(Wang et al., 2019), SuperGLUE (Wang et al.,
2020), and MMLU (Hendrycks et al., 2021) assess
multitask language understanding across a wide
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range of topics and tasks. However, these bench-
marks do not provide insights about a model’s ca-
pabilities in terms of human language acquisition,
such as in the three-stage framework we provided.
Insights from previous studies on the stages of hu-
man language development may offer valuable ref-
erence points for evaluating models’ performance.

Previous studies have demonstrated that models
can learn hierarchical syntactic structures and ex-
hibit sensitivity to various linguistic phenomena,
even when trained with the amount of data that hu-
mans typically encounter (Millière, 2024; Wilcox
et al., 2024). Assessing these models through the
lens of human language development can provide
further insights and deepen our understanding of
LMs’ capabilities.

Human language development is a gradual,
stage-based process. In the following section (§3),
we will provide a more detailed description of this
process, along with a breakdown of language capa-
bilities at each developmental stage.

3 Psycholinguistics View Framework and
Datasets

Psycholinguistics explores the cognitive processes
behind language acquisition, focusing on how hu-
mans gradually develop language abilities. We
primarily focus on research related to the various
stages of language development.

Previous research has established that language
development follows a relatively stable trajectory,
with several key stages identifiable along the way.
For example, Gesell et al. (1946) found that the
development of spoken language demonstrates con-
sistent growth, as reflected in metrics such as the
average number of words per communication unit,
the number of clauses per unit, and the elaboration
between subjects and verbs.

Similarly, Templin’s (1957) analysis of subor-
dinate clause usage also underscores these stages,
showing that eight-year-old children use subordi-
nate clauses significantly more often than three-
year-olds, marking a pivotal point in language ac-
quisition. And Gesell et al. (1946) indicated that
the development of spoken language shows a rel-
atively stable growth trend. For example, the av-
erage number of words per communication unit
(C-Unit), the number of clauses in each communi-
cation unit, and the amount of elaboration between
subjects and verbs all continue to increase.

3.1 Framework
Combining the findings above with those of Watts
(1944); O’Donnel et al. (1967); Paul (2007) and the
summary of Loban (1976), we can roughly divide
the overall process of language development into
three stages:

Stage I (Ages 0-6): At this stage, children primar-
ily focus on understanding vocabulary, and simple
syntactic structures begin to emerge. They gradu-
ally learn to use pronouns and verbs and become
able to distinguish between the present and past
tense. Although language expression remains rela-
tively simple at this age, the use of compound sen-
tences increases, especially those that express con-
ditionality and causality. Using words like “why,”
“because,” and “if,” children begin to engage in pre-
liminary causal reasoning, though this ability is not
yet fully developed.

Stage II (Ages 6-12): During this stage, the
development of language gradually moves to-
wards more complex grammatical structures. They
begin to master finer syntactic elements, such
as predicate-argument structures, prepositional
phrases, subordinate clauses, and the use of active
and passive voice. Their semantic understanding
also advances, enabling them to grasp the implied
meanings of words (e.g., “run” implies “move-
ment”) and handling negation through pre-pending
or appending particles to the stem of a word (i.e.,
morphological negation, refers to the process of
creating a negative form of a word by adding a pre-
fix, such as when “possible” becomes “impossible.”
This involves using prefixes like “un-,” “in-,” or
“im-” to change the meaning of the original word
to its opposite).

In addition, during this stage, children develop
the ability to recognize named entities, quantifiers,
and complex concepts such as factuality, symmetry,
and redundancy.

Stage III (Above age 12): At this stage, chil-
dren’s language abilities are reflected not only in
the complexity of their verbal expression but, more
significantly, in their use of logical reasoning and
abstract thinking. They begin to engage in spa-
tial reasoning, deductive reasoning, and syllogistic
analysis, which allows them to use language with
greater precision and rigor. Additionally, they be-
come adept at resolving ambiguities in words with
multiple meanings and demonstrate a marked im-
provement in reading comprehension skills.
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3.2 Datasets
Within each stage we just introduced, we compile
several datasets and introduce them in the following
section.* For an overview of the datasets, please
refer to Table 2 in Appendix E and see Table 5 in
Appendix E for the example of each dataset.

3.2.1 Stage I
one-word understanding: To assess the LM’s
understanding of individual vocabulary items, we
selected examples from publicly accessible vocab-
ulary sample tests (Test, 2024; EnglishTestsOn-
line.com, 2024) and randomly extracted frequently
used vocabulary with brief examples from Ox-
ford_Learner’s_Dictionary (2024).

In this task, LMs will be asked to answer sim-
ple multiple-choice questions. They will need to
choose one of the four choices (a word or phrase)
that makes the most sense in the given context.

agent-action-object (AAO): To test whether
LMs possess the knowledge to decide whether it is
reasonable to take an action on the object, we chose
the “subject-verb-trans” set from BLiMP (Warstadt
et al., 2023) as our AAO dataset.

In this task, LMs will be provided two sentences
that have minimal differences (one or two words),
where one of the two sentences is grammatically
correct, and the other is not. LMs will be asked
to distinguish between correct and incorrect sen-
tences.

bc-if-why: We select examples containing
the words {because, if, why} from the Multi-
Genre Natural Language Inference (MNLI) dataset
(Williams et al., 2018), to test the models’ prelimi-
nary expressiveness in terms of conditionality and
causality.

Following the same format in the MNLI dataset,
we let the models perform a three-class classifica-
tion task. Given premise and hypothesis, models
will need to classify them into {entailment, neutral,
contradiction}.

3.2.2 Stage II
Grammar-comp: To evaluate complex grammat-
ical structures, we included more comprehensive
and diverse grammatical types (e.g. quantifiers,
belief verbs) in this task from MNLI (Williams

*Note that we filter the training dataset and restrict the
average C-Unit. In some cases (e.g., bc-if-why), because
there is not a sufficient number of filtered examples from
its evaluation set, we randomly split off 20% of the training
dataset for validation. For datasets that do not require filtering,
the evaluation sets are provided.

et al., 2018). We also exclude instances containing
participial words that are not typically mastered
at this stage. We keep the same task setup as in
“bc-if-why” in Stage I.

BLiMP-comp: To minimize the influence of in-
ference on grammar tasks in addition to MNLI, we
extract minimal pair tasks from BLiMP (Warstadt
et al., 2023), which includes a wide range of gram-
matical phenomena, from subject-verb-agreement
to syntactic structure. We select those subsets with
human average performance of at least 80% accu-
racy as tests. The format is the same as the AAO
task.

CoLA (Warstadt et al., 2018): Unlike the other
two tasks in this stage, models are required to clas-
sify a sentence as either grammatically correct or
incorrect, assigning it to one of two classes: True
or False, respectively.

3.2.3 Stage III
WiC: The WiC dataset (Pilehvar and Camacho-
Collados, 2019) focuses on words that have multi-
ple meanings. We used it to test the models’ ability
to probe both the context of the sentences and dif-
ferent definitions of the word when those exist.

In this task, two sentences will be given, where
each has one word in common, but they may or may
not have the same meanings. Models will need to
judge whether this word has the same meaning or
not under these two contexts.

ReClor: This dataset (Yu et al., 2020) is com-
posed of complex logical reasoning questions. We
used it to test whether the models possess complex
language abilities, including word understanding,
grammatical accuracy, inference, and reasoning.

During this task, models will do multiple-choice
questions. Provided with a context and a question,
models are expected to choose the most suitable
answers to the question from one of four choices.

4 Experimental Setup

In this section, we introduce the LMs we tested
(§4.1), the testing methods for different tasks per-
formed by the LMs (§4.2), as well as the evaluation
method (§4.3).

4.1 Models

We investigated 15 LMs in total (excluding instruc-
tion fine-tuned or chat versions) over a broad time
period (2019 to 2024) and with varying model pa-
rameter sizes.
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These include GPT-2 (gpt-2-large, gpt-2-xl;
Radford et al., 2019), RoBERTa (RoBERTa-base,
RoBERTa-large; Liu et al., 2019), ALBERT
(ALBERT-xlarge, ALBERT-xxlarge; Lan et al.,
2019), Google T5 (T5-3b, T5-large; Raffel
et al., 2020), OPT (opt-1.3b, opt-2.7b; Zhang
et al., 2022), Llama2 (Llama-2-7b-hf), Mistral
(Mistral-7B-v0.3; Jiang et al., 2023), Llama3 8B
(Meta-Llama-3-8B), and Gemma2 (gemma-2-2b,
gemma-2-9b).

4.2 Testing Methods
We use three different strategies to test the perfor-
mance of LMs because of the specific task design
of certain datasets (e.g., classification), and LMs’
architecture differences.

Classification Task: In this type of task, sen-
tences are given as inputs to models. Models will
output a class label (e.g., {0, 1} for two-class clas-
sification, {0, 1, 2} for three-class classification).

Minimal Pair Task and Vocabulary Task: In
these two kinds of tasks, we will either calculate the
loss for decoder-only models or compare the prob-
ability distributions of the masked token through
Masked Token Prediction (MLM) (BERT-style) or
Span Predictions (T5). Please refer to Appendix
C.1 for details on the format.

Reading Comprehension Task: For this task,
we select either the available chat versions or the
instruction-fine-tuned versions of our chosen mod-
els, as these can be prompted to answer questions
in a designated format. In addition to the normal
prompt, we also apply the zero-shot CoT (Wei et al.,
2022b) and one-shot ICL (Brown et al., 2020) to
determine whether any further improvement in the
performance of the LMs can be obtained.

Generation Task: The chat and instruction-fine-
tuned versions of the models are prompted with
instructions for ten different topics, taken from
GRE public issue writing prompts (Educational
Testing Service). Sample essays with full scores
are sourced from (Yu, 2024) to compare with the
performance of the LMs on this task.

4.3 Evaluation Method
We report accuracy as our main performance met-
ric, as in the original formulation, because most
of our testing data is balanced. CoLA dataset
(Warstadt et al., 2018) also uses the Matthews cor-
relation coefficient (see C.2).

Normalized Accuracy: Although the NLI
task has a baseline accuracy of 0.33 (random

guess), tasks with four choices, such as one-word
understanding, have a baseline accuracy of 0.25.
Therefore, it is unreasonable to compare them
solely on their original accuracy. We have therefore
normalized each metric by the following formula:

Normalized_Accuracy =
A−R

1−R

where A is the observed accuracy, R is the accuracy
of a random guess. This formula is the same as
Cohen’s kappa coefficient for rating tasks, which
takes random rater agreement into account (Cohen,
1960).

5 Experimental Results

We first analyzed whether the LMs’ overall devel-
opmental trends between the years 2019 and 2024
were consistent with the developmental trajectory
of human language (§5.1). On this basis, we fur-
ther explored three core questions: (1) Did scale
matter? (2) Did architecture matter? (3) Did data
matter? Finally, we conducted a comprehensive
and in-depth evaluation of the models’ generative
abilities from a linguistic perspective (§5.2).

5.1 Overall Trends in Language Models’
Development

Here, we focused on the overall development trends
of LMs, and whether these models mimic the pro-
cess of human language acquisition. As noted pre-
viously, just as humans learn language from an
early age by being exposed to a large amount of
spoken or written language, LMs are trained on
vast text corpora. Both humans and LMs develop
language abilities through repeated exposure to lan-
guage, forming patterns and associations over time.
Previous research on the stages of human language
development may serve as a reference.

As mentioned earlier, these datasets have been
divided into tasks based on theories of human lan-
guage development. We anticipated that certain
LMs would exhibit stronger performance in the
early stages of language acquisition but show more
modest results in the later stages. Further, if these
stages of human language development hold for
the development of LMs, then if an LM achieves
relatively good results in the third stage, then it
should also demonstrate corresponding success in
the first and second stages on which the third stage
depends. Despite this theoretical motivation, the
experimental results did not support this hypothe-
sis.

5



Stage I

ReClor

one-word

grammar-comp

bc-if-why
AAO

BLiMP-comp

CoLA
WiC

ReClor

N
orm

alized ACC

Stage II Stage III

gpt2-l
gpt2-xl
RoBERTa-base
RoBERTa-large
ALBERT-xl
ALBERT-xxl
T5-l
T5-xl
opt-1.3b
opt-2.7b
Llama2-7b

Llama3-8b
Mistral-7b

gemma2-2b
gemma2-9b

Flan-t5-l
Flan-t5-xl
opt-1.3b-iml
Llama2-7b-chat

Llama3-8b-chat
gemma2-2b-it
gemma2-9b-it

Mistral-7b-it

Figure 2: Performance of LMs across three stages. The upper right legend corresponds to models tested in tasks
except for ReClor. The lower right legend corresponds to models tested in ReClor. For each task, models are ordered
by their time released, and the tie is broken by their parameter sizes. Results from CoLA also use a different metric;
please refer to Figure 4 in Appendix E.

Figure 2 displays our overall results. In Stage I,
we first tackled fundamental tasks of human lan-
guage acquisition, such as understanding individ-
ual words. Most models performed well at this
stage, but a few lagged behind. For example, the
accuracy of T5 and RoBERTa was only half that
of other models in one-word understanding. We
found that Gemma2 performed well in many tasks;
however, it fell short compared to other models on
the AAO task. After conducting some experiments
(see Appendix A) on these models, we discovered
that T5 and RoBERTa did not perform well on
questions requiring contextual information. How-
ever, the fine-tuned versions of T5 and Gemma2
excelled in one-word understanding and the AAO
task, respectively.

Stage II involved more complex grammatical
knowledge, yet most LMs did not share this diffi-
culty, performing as well as, or even better than,
they did in stage I. Notably, despite similar overall
performance, there were significant differences in
the models’ scores across different grammatical
phenomena from BLiMP-comp. Please refer to
Table 4 in Appendix E for detailed examples.

In Stage III, performance differences among the

LMs became more pronounced across various tasks.
For the WiC task, the LMs failed to demonstrate
comparative performance relative to other tasks
in Stage I and Stage II. In the ReClor task, the
fine-tuned opt-1.3b model and Llama2-chat ver-
sion performed poorly, while Gemma2-9b-instruct
achieved higher accuracy. Moreover, one-shot ICL
and CoT learning did not significantly improve
model performance in this task (see Table 3 in Ap-
pendix E for more details).

Does Scale Matter? Although previous research
has shown that the performance of LMs often im-
proves with the expansion of model parameters
(Kaplan et al., 2020), in most of the ability tests
we conducted across different stages of language
development, there was no significant difference
in performance between small models and their
larger counterparts. The only exception was the
complex task ReClor (in Stage III), where larger
models significantly outperformed smaller ones.

Just like previous research (e.g., Millière, 2024;
Wilcox et al., 2024), our results also support the
idea that small models can effectively encode suf-
ficient information for certain tasks, meaning that
increasing model parameters is not the only path
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to improving performance. Therefore, instead of
solely pursuing larger models, drawing insights
from linguistic research might be a more effective
way to enhance overall model performance (Mil-
lière, 2024; Wilcox et al., 2024).

Does Architecture Matter? We noticed that, in
classification tasks, encoder models (including T5,
which only uses its encoder part for classification),
even with smaller numbers of parameters, almost
equalize or exceed the performances of decoder
models with larger numbers of parameters. The
bidirectional property of encoder models could con-
tribute to this.

To master NLI and WiC tasks, it is pivotal to pos-
sess the inter-relationship between tokens in two
sentences. Consequently, models with encoders
could cross-attend to previous and later contextual
information in the question and thus manage such
tasks well.

For tasks that compare loss between sentence
pairs (AAO and one-word), most decoder-only
models, such as GPT-2, outperform encoder-
only or encoder-decoder models (e.g., T5 and
RoBERTa). The differences in architecture deter-
mine how they tackle such problems, particularly
with prediction loss (e.g., MLM vs. next-token
prediction).

We suspect that the randomness introduced by
masking tokens (or corruption rates for T5) could
contribute to this difference. Additionally, Next
Sentence Prediction (NSP) might play an important
role in one-word understanding tasks. Even with
larger batch sizes, models such as RoBERTa and
T5, which are not trained on NSP, may lack the
ability to model sentence-to-sentence transitions,
which is essential for that task.

Do Data Matter? As the representations in AI
models are converging (Huh et al., 2024), the scale
and the quality of data that they learn from are the
key to their performance. We found that as models’
pretraining data scale up, regardless that bigger
is not always better, there was a trend to perform
better in each stage (see Figure 6, 7, 8 in Appendix
E).

Noticeably, Mistral keeps an impressive
performance–to-data volume ratio, but it does not
bear this advantage in stage III. Although there
might be disparities among model sizes, we could
anticipate that with a larger amount of training data,
LMs could learn richer knowledge and generalize
it better.

5.2 Language Models’ Generation Ability

We also evaluated the generation abilities of some
LMs through the generation task. Here, we regard
generation ability as a reflection of LMs’ overall
capability, as generation requires word-level under-
standing, flexible use of grammatical knowledge,
and strong logical reasoning skills to ensure sen-
tence completeness and fluency.

In the field of linguistics, extensive research
has explored co-occurrence patterns of language
features. Drawing on the study of the Multi Di-
mensional Analysis Tagger (MAT) by Nini (2019),
which replicates the procedure by Biber (1988), we
compared five representative dimensions.

NN (nouns that are not identified as nominaliza-
tions or gerunds): The use of nouns is an important
component of syntactic structure, helping to assess
whether the model handles nouns accurately and
flexibly.

AWL (average word length): Word length re-
flects the complexity of the generated text and the
diversity of language style, measuring the model’s
lexical richness.

Clause (a collection of adjectival and adverbial
clauses): The frequency and diversity of clause use
reflect the model’s ability to generate complex sen-
tences, showcasing its mastery of advanced gram-
mar.

TTR (type-token ratio): This dimension evalu-
ates the richness of the generated text in terms of
lexical diversity, indicating the model’s flexibility
in word choice.

Auxiliary verbs (e.g., modal verbs expressing
possibility, prediction, and necessity): The use of
auxiliary verbs reveals whether the model can ex-
press complex reasoning and logical relationships,
serving as an important indicator of reasoning abil-
ity in generation tasks.

In all five dimensions, we found that humans
tend to exhibit more variation than LMs in the NN
(noun usage) and TTR (type-token ratio) dimen-
sions, whereas no significant differences were ob-
served on the other three dimensions (see Figure
3). We believe this variation is due to the following
reasons:

(1) NN: Humans, when using language, tend to
flexibly choose vocabulary and expressions depend-
ing on the context, topic, and purpose of commu-
nication. The use of nouns may reflect humans’
ability to name objects, concepts, or abstract ideas
within a specific context, and this ability becomes
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more diverse as topics change. On the other hand,
LMs, though trained on large corpora, may rely
on more frequent patterns or words during genera-
tion rather than adjusting as flexibly as humans do
based on context.

(2) TTR: Human language ability is often char-
acterized by broad vocabulary use, especially when
dealing with complex or rich topics, where such
lexical diversity becomes more apparent. In con-
trast, LMs might tend to use more common words
when generating text, particularly if certain words
appear more frequently in the training data, leading
to less flexibility in lexical diversity, compared to
humans.

Overall, although LMs can simulate a certain
level of human linguistic diversity, we believe that
due to their reliance on training data, they may not
exhibit the same level of variation and flexibility as
humans when producing new linguistic expressions.
In the other three dimensions (such as word length,
use of subordinate clauses, and auxiliary verbs),
the differences between LMs and humans were
smaller, likely because these dimensions depend
more on grammatical structure and syntactic rules,
which are more clearly defined in the training of
LMs, allowing them to match human performance
in these areas.

Language Models’ Development in Generation
We also explored the relationship between these
five dimensions and the development trends of
LMs. We found that except for Clause and Aux-
iliary verbs, NN, AWL, and TTR showed signif-
icant progress (see Figure 9). This phenomenon
may be due to improvements in the training cor-
pora for models. The progress in NN and AWL
may reflect an enhancement in the models’ ability
to generate complex and precise vocabulary. As
LMs developed, their vocabulary size, semantic
understanding, and contextual processing capabili-
ties improved through learning from training data,
enabling them to generate richer vocabulary and
longer, more complex structures. The increase in
TTR indicates that the model can use a wider range
of vocabulary when generating text, rather than
repeatedly using the same words. This could be at-
tributed to the model’s ability to better capture lex-
ical diversity when processing large-scale training
corpora and reflect this diversity in its generation
tasks.

In contrast, the trends for Clause and Auxiliary
verbs showed less noticeable changes, possibly be-

cause these features involve more complex gram-
matical structures and logical reasoning. Models
have made progress in vocabulary generation, yet
they still face significant challenges in accurately
generating more complex clauses and auxiliary
verbs. This may require deeper syntactic under-
standing and stronger logical reasoning abilities,
which are improving at a slower pace.

Figure 3: Generation Abilities of six models along five
selected dimensions.

6 Conclusion

We evaluated LMs by incorporating theories from
human language acquisition. Building on classi-
cal language development theories, we proposed
a three-stage framework to assess the abilities of
LMs. By and large, we observed that LMs do not
conform to human language acquisition patterns.
Although some LMs performed competitively in
the later stages, they struggled with tasks in the
earlier stages. This may be due to their specific
architectures, parameter sizes, and the language
corpora they were trained on.

Models show smaller differences from human
performance in areas where information is easier
to extract from the corpus, such as average word
length, clause structure, and auxiliary verb usage
in generation tasks. For dimensions that do not
vary significantly across corpora, the models’ per-
formance similarly does not show a significant im-
provement.

Register theory offers a plausible explanation for
these observations, suggesting that the linguistic
features of the training data substantially influence
the models’ abilities.
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Limitations

This evaluation was necessarily limited by the gen-
res of our collected dataset, which consisted en-
tirely of text. Texts represent only part of the infor-
mation acquired during human language acquisi-
tion. For example, Barreto (2019) introduced visual
questions in the CELF-5 that assessed children’s
understanding of spatial terms, requiring the exami-
nee to identify the position of an object in a picture.
Similarly, the TOLD-P:5 (Newcomer and Hammill,
2018) assessed children’s spoken language skills
through tasks such as defining spoken words and
demonstrating an understanding of their meanings.
To explore this topic further, a multimodal dataset
incorporating images, videos, and speech would
have been necessary.

Moreover, since the aforementioned assessments
were commercially available, accessibility issues
arose concerning such datasets. In the spirit of
open science, future work should focus on creating
similar datasets that are open to a wide range of
research communities.

Additionally, research by McMurray et al. (2014)
showed individual differences in human language
abilities. Similarly, LMs could have been devel-
oped to model such variations more closely.

Finally, due to the rapid advancements in LMs
and their increasing parameter sizes, a continuous
and sustainable evaluation of these models might
have been required.

Ethics Statement

The datasets we compiled are all publicly available
for research purposes (under CC-BY 4.0 license
or unspecified). We have manually checked each
example from the one-word understanding we col-
lected and modified to ensure it does not contain
any harmful information or bias.
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A Appendix A: Case Study

An example question in one-word-
understanding that T5 made a mistake

Model choice: wait
Correct choice: rush

You don’t have to ______! We’re not late!

A) dream
B) laugh
C) rush
D) wait

We also investigate questions that RoBERTa and
T5 answered incorrectly in the one-word under-
standing task, which all other models, including
decoder-only and encoder-only models, answered
correctly. After a thorough inspection of the testing
examples that RoBERTa and T5 did not answer
correctly, we identified two common points: (1)
The models tend to choose answers that form more
frequent collocations. For example, the models pre-
fer “think about” over “complain about.” “Think
about” can be used in a wider variety of contexts,
including contemplation, consideration, and plan-
ning, whereas “complain about” has a negative
connotation and is more context-specific. (2) Most
of these questions require information from the sur-
rounding context, either before or after the blank
that needs to be filled in, which is similar to the
findings of the case study in Wang et al. (2024b).

We carefully selected 50 examples from our
training dataset on one-word understanding and
tested RoBERTa-base and T5-large on these exam-
ples. All of the selected questions are composed of
either those requiring context knowledge or those
relying solely on collocation knowledge. To solve
example A, the models must attend to the second
sentence to understand that “not late” is related to
“don’t have to rush,” rather than focusing solely on
the first sentence.

RoBERTa RoBERTa-base answered 23 out of
50 examples correctly with an accuracy of 46%.
Upon closer investigation, we found that, out of
the 27 questions RoBERTa made mistakes on, 60%
(16 questions) required context, while 40% (11
questions) were related to collocation.

T5 For the same set of examples, T5-large cor-
rectly answered 28 out of 50 examples, achieving

an accuracy of 56%. Of the 22 questions that T5
answered incorrectly, 16 (73%) required some con-
textual knowledge, while 6 (27%) involved collo-
cations.

Since T5 performed relatively well compared to
other models, we speculate that the way it handles
multiple-choice questions contributes to its lower
performance (see §5.1). As a result, we tested Flan-
T5 (both large and 3b) on this task. We found
that their performance, measured by normalized
accuracy, increased to 0.807 (Flan-T5-l) and 0.898
(Flan-T5-xl).

Gemma2 Similarly, we tested instruction-fine-
tuned versions of Gemma2 on the AAO task, where
it underperforms. Their normalized accuracy rises
to 0.87 and 0.85 for the 2b and 9b models, respec-
tively, approaching the performance of other mod-
els. By fine-tuning on a wider variety of datasets,
it enables generalization across a range of tasks.

B Appendix B: Data Contamination

There has been an increasing concern in data con-
tamination nowadays (Deng et al., 2024). In this
section, we investigate whether the pretraining data
contain any datasets used in our evaluation. We
apply the MIN-K% Prob method (Shi et al., 2024).
This method selects the top k% of tokens with the
highest negative log-likelihood and then computes
the average log-likelihood. It is based on the hy-
pothesis that an unseen example is likely to contain
a few outlier words with low probabilities under
the LMs, whereas a seen example is less likely to
have words with such low probabilities. We follow
the same settings as in that research and choose
k = 20. If the number of tokens is between zero
and one after multiplying the token length by 20%,
we round it up to one.

In the following paragraph, we list the selection
methodology:

one-word-understanding: We selected all in-
stances of our test datasets and included sentences
containing the correct answers.

AAO: We selected all examples from the test set,
including both sentence_good and sentence_bad.

bc-if-why: We included all instances in the test
datasets, incorporating both the premise and the
hypothesis.

grammar-comp: In the test data, we randomly
selected 1,000 examples and kept all other settings
the same as in bc-if-why.
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BLiMP-comp: For each grammatical phe-
nomenon, we selected 50 examples, resulting in
2,800 instances. All other settings were the same
as in AAO.

CoLA: All of the test examples were selected.
grammar-diag: We included all of the examples

in the test datasets. The settings were the same as
in bc-if-why.

WiC: Both sentences, one and two, were in-
cluded.

ReClor: We tested the “context” part in each
question. For this question, we tested the instruc-
tional fine-tuned and the chat version of the models.

Across each task, we presented the average MIN-
K% probability for all individual sentences. For
encoder-only models, we adapted this method by
calculating the logits after masking each token in
every sentence. To measure the relative MIN-K%
probability, we randomly generated a sequence of
all alphabets with a length of 10.

Overall, all models demonstrated comparatively
low probabilities. We found that, in most datasets,
the models are within 5% of the probabilities from
random letters. However, gemma2-2b slightly ex-
ceeds 5% in the AAO dataset, which we consider
acceptable (see Table 1).

C Appendix C: Implementation Details
and Metrics

C.1 Implementation Details

Classification For BERT-style encoder models
(Devlin et al., 2019), a special token, [CLS], is
used as input to an MLP for prediction. In decoder
models such as GPT-2 (Radford et al., 2019), the
hidden state of the last token is connected to a clas-
sification head. For T5 (Raffel et al., 2020), with
an encoder-decoder architecture, we use only the
encoder to make predictions. Since an MLP is con-
catenated to each model, fine-tuning is necessary
for the models to perform classification. Otherwise,
the results will be random guesses. We fine-tune
the models on grammar-comp for 1 epoch due to
the large amount of data, and other classification
tasks for 20 epochs maximum using four NVIDIA
A-6000 GPUs. The learning rates we used range
from 1e-6 to 1e-4, depending on model sizes and
data sizes. Training batch sizes range from 1 to
16, given different parameter sizes. We also use
LoRA (Hu et al., 2021) for models with large pa-
rameter sizes (Llama2-7b, Llama3-8b, Mistral-7b,

Gemma2-9b) due to the limitations of computa-
tional resources.

Minimal Pair and Vocabulary For decoder
models, the average loss of the sequence is com-
puted to determine which sentence is better. For
BERT-style models, Masked Language Modeling
is used to make predictions. For minimal pair
questions (AAO and BLiMP-comp), special masks
(e.g., <MASK>) are placed at the positions where
the two sentences differ. Of the masked words,
we select the one with a larger probability among
the prediction of the masked positions. Simi-
larly, for one-word understanding, we masked the
blanks in the sentence. Then we choose one of
the four words/phrases with the largest probability.
T5, which is very similar to BERT-style models,
uses Span Predictions. We compare the proba-
bility of the words it predicts between the span:
<extra_id_0> word(s) predicted <extra_id_1>.

Generation Configuration The number of to-
kens generated by the LMs is set between a min-
imum of 500 and a maximum of 600 to ensure
meaningful and comparable results across all cho-
sen models. We keep the default generation pa-
rameters for all models, with two exceptions: Flan-
T5 (Chung et al., 2022) and OPT-IML (Iyer et al.,
2023) tend to generate repetitive sentences, so we
relax their sampling criteria and apply top-k sam-
pling with a probability of 0.9.

Other For filtering examples from datasets, we
use the nltk (Bird et al., 2009) and spaCy(Honnibal
et al., 2020) packages in Python.

C.2 Matthews Correlation Coefficient
Formulation:

MCC =

TP · TN − FP · FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(1)

where:

• FP: False Positive

• FN: False Negative

• TP: True Positive

• TN: True Negative
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Models AAO one-word bc-if-why grammar-
comp

BLiMP-
comp

CoLA grammar-
diag

WiC ReClor Random
letters

opt-1.3b 12.75 10.18 9.13 9.42 12.51 10.37 9.11 10.41 10.30 10.29
opt-2.7b 12.8 10.17 9.16 9.43 12.54 10.38 9.05 10.39 / 10.22
T5-large 12.75 10.18 9.13 9.42 12.78 10.37 9.11 10.41 0.73 4.88
T5-3b 12.75 10.18 9.13 9.42 13.27 10.37 9.11 10.41 0.62 5.00
gpt2-large 12.66 10.55 8.91 9.15 12.54 10.04 9.02 9.73 / 9.87
gpt2-xl 12.67 10.47 8.86 9.13 12.38 10.04 8.99 9.70 / 9.84
Llama2-7b 11.58 9.24 8.96 8.87 11.29 9.63 8.36 9.89 8.31 9.87
Llama3-8b 13.13 10.35 9.80 9.70 12.69 10.58 9.03 10.85 11.00 11.00
Mistral-7b 12.16 9.80 9.64 9.42 12.14 10.18 8.72 11.27 7.08 10.12
gemma-2-2b 20.22 14.06 13.25 13.52 19.60 15.22 12.62 16.26 8.62 15.54
gemma-2-9b 22.14 14.82 13.85 14.03 21.50 16.12 12.94 16.63 9.11 17.11
ALBERT-xlarge 11.62 8.72 7.46 7.65 11.03 8.13 7.08 8.27 / 11.19
ALBERT-xxlarge 12.65 8.72 7.46 7.65 12.07 8.13 7.08 8.27 / 11.17
RoBERTa-base 12.87 9.29 7.27 7.10 11.92 7.91 5.82 7.99 / 9.89
RoBERTa-large 12.50 8.81 6.83 6.62 11.50 7.61 5.36 7.45 / 9.29

Table 1: MIN-K% Prob measured in %. Models measured in the ReClor task are the fine-tuned or chat version of
that model.

D Appendix D: Interdisciplinary
Collaboration

We would like to emphasize the importance of in-
terdisciplinary collaboration. As LMs continue
to evolve and mature, their potential applications
across various fields are becoming increasingly ev-
ident. For example, they can be used in sports as-
sessment (Xia et al., 2024), assist in questionnaire
design in the social sciences (Wang et al., 2024c),
answer clinical case questions (Chen et al., 2024),
and even help with candidate screening (Wang
et al., 2024a).

Interdisciplinary collaboration not only pro-
vides innovative technological solutions for various
fields, but also brings unique insights from differ-
ent disciplines into computer science, facilitating
a better understanding of the underlying problems.
For instance, collaboration between computer sci-
ence, linguistics, and psycholinguistics offers new
perspectives and methods, aiding in understand-
ing the natural language processing capabilities of
models from the viewpoint of language formation
and development.

Such interdisciplinary collaboration transcends
the limitations of individual disciplines, fostering
the integration and innovation of knowledge, and
enabling more complex and intelligent technologi-
cal solutions. This trend presents new opportunities
for future research and practice, driving societal
progress.

E Appendix E: Tables and Graphs

Stage Type Data Split AspectTrain Test

one-word 598 255 word-level

I

AAO - 1k preliminary
common sense

bc-if-why 1.4k 348 causality
conditionality

II

grammar-comp 170k 19k

grammar

CoLA 6.8k 1.7k

grammar-diag - 645

BLiMP-comp - 56k

WiC 5.4k 1.4k word meaning
under context

III

ReClor 4.6k 1k logical
reasoning

generation - 10 logical
composition

Table 2: Tasks from different stages. The Aspect col-
umn lists different language aspects tested. AAO =
agent-action-object; one-word = one-word understand-
ing dataset.
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Figure 4: CoLA performance in Stage II measured in Matthews Correlation Coefficient (C.2). The result is obtained
by training models at most 20 epochs

Models Raw Accuracy 1-shot ICL 0-shot CoT
opt-iml-1.3b 0.31 0.32 +0.06 0.32 +0.06
Flan-t5-l 0.42 0.38 -0.05 0.42 +0.00
Flan-t5-xl 0.55 0.55 +0.00 0.54 -0.00
Gemma2-2b-it 0.49 0.46 -0.03 0.49 +0.00
Gemma2-9b-it 0.72 0.76 +0.04 0.71 -0.01
Llama2-7b-chat 0.37 0.36 -0.01 0.36 -0.01
Llama3-8b-chat 0.58 0.56 -0.03 0.43 -0.15
Mistral-7b-it 0.55 0.55 +0.00 0.53 -0.02

Table 3: Model Performance with raw accuracy on ReClor Dataset with 1-shot ICL and 0-shot CoT.

Grammar Phenomena RoBERTa-base T5-l Gemma2-9b Human
passive_2 0.60 0.87 0.75 0.86
determiner_noun_agreement_with_adj_irregular_1 0.50 0.83 0.89 0.94
superlative_quantifiers_2 0.89 0.76 0.71 0.85
wh_questions_subject_gap_long_distance 0.72 0.90 0.80 0.85
superlative_quantifiers_1 0.42 1.00 0.71 0.94
causative 0.72 0.78 0.65 0.98

Table 4: Selected results from BLiMP-comp of detailed grammar phenomena. We could notice the discrepancy in
performance among the three models in these tasks, while humans could maintain high performance relatively.
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Figure 5: Grammar-diag performance in Stage II. Models are ordered by time. We test on models after fine-tuning
on bc-if-why and grammar-comp’s training set.

Figure 6: Stage I performance (normalized) vs. their data scale in the logarithm of Gigabyte.
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Figure 8: WiC in Stage III performance (normalized) vs. their data scale in the logarithm of Gigabyte.
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Figure 9: Four types of grammar metrics. Models are ordered by time

Figure 10: Clause grammar metrics. Models are ordered by time

19



Examples of each task

one-word understanding

Question: When you say something to someone’s ear quietly and secretly, you ______.

A) repeat
B) whisper
C) discuss
D) cry
Correct Answer: B

Agent-Action-Object (AAO)

sentence_good: Tanya conceals Adam.
sentence_bad: This ice cream conceals Adam.

bc-if-why

Premise: If we keep up, they’ll route.
Hypothesis: They’ll route if we keep up.
Label: Entailment
grammar-comp

Premise: For Master P, neither is an appealing prospect.
Hypothesis: Master P found both projects to be appealing.
Label: Contradiction

CoLA

sentence: The in loved peanut butter cookies.
Label: 0 (False)

BLiMP-comp: determiner_noun_agreement_adj_2

sentence_good: Cynthia scans these hard books.
sentence_bad: Cynthia scans this hard books.

WiC

word: carry
sentence1: You must carry your camping gear.
sentence2: Sound carries well over water.
Label: F (False)

ReClor

Context: In a business whose owners and employees all belong to one family, the employees can be
paid exceptionally low wages. Hence, general operating expenses are much lower than they would be for
other business ventures, making profits higher. So a family business is a family’s surest road to financial
prosperity.

Question: The reasoning in the argument is flawed because the argument

A) ignores the fact that in a family business, paying family members low wages may itself reduce the
family’s prosperity
B) presumes, without providing justification, that family members are willing to work for low wages in a
family business because they believe that doing so promotes the family’s prosperity
C) ignores the fact that businesses that achieve high levels of customer satisfaction are often profitable
even if they pay high wages
D) presumes, without providing justification, that only businesses with low general operating expenses
can succeed
Answer: A

Table 5: One example from each dataset.
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